Background: The lower airways microbiome and host immune response in chronic pulmonary diseases are incompletely understood. We aimed to investigate possible microbiome characteristics and key antimicrobial peptides and proteins in idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD).
Methods: 12 IPF patients, 12 COPD patients and 12 healthy controls were sampled with oral wash (OW), protected bronchoalveolar lavage (PBAL) and right lung protected sterile brushings (rPSB).
Objective: Little is known concerning the stability of the lower airway microbiome. We have compared the microbiota identified by repeated bronchoscopy in healthy subjects and patients with ostructive lung diseaseases (OLD).
Methods: 21 healthy controls and 41 patients with OLD completed two bronchoscopies.
p53 protein isoform expression has been found to correlate with prognosis and chemotherapy response in acute myeloid leukemia (AML). We aimed to investigate how p53 protein isoforms are modulated during epigenetic differentiation therapy in AML, and if p53 isoform expression could be a potential biomarker for predicting a response to this treatment. p53 full-length (FL), p53β and p53γ protein isoforms were analyzed by 1D and 2D gel immunoblots in AML cell lines, primary AML cells from untreated patients and AML cells from patients before and after treatment with valproic acid (VPA), all- retinoic acid (ATRA) and theophylline.
View Article and Find Full Text PDFBackground: The fungal part of the pulmonary microbiome (mycobiome) is understudied. We report the composition of the oral and pulmonary mycobiome in participants with COPD compared to controls in a large-scale single-centre bronchoscopy study (MicroCOPD).
Methods: Oral wash and bronchoalveolar lavage (BAL) was collected from 93 participants with COPD and 100 controls.
Background: Studies on the airway microbiome have been performed using a wide range of laboratory protocols for high-throughput sequencing of the bacterial 16S ribosomal RNA (16S rRNA) gene. We sought to determine the impact of number of polymerase chain reaction (PCR) steps (1- or 2- steps) and choice of target marker gene region (V3 V4 and V4) on the presentation of the upper and lower airway microbiome. Our analyses included lllumina MiSeq sequencing following three setups: Setup 1 (2-step PCR; V3 V4 region), Setup 2 (2-step PCR; V4 region), Setup 3 (1-step PCR; V4 region).
View Article and Find Full Text PDFCancers (Basel)
December 2020
Khat (.) is habitually used as a natural stimulant by millions of people, but is associated with adverse effects on gastrointestinal, cardiovascular and central neural systems. At the cellular level khat toxicity involves p53 induction and cell cycle arrest, decreased mitochondrial function and activation of receptor- and mitochondria-mediated cell death pathways.
View Article and Find Full Text PDFObjective: The aim of this pilot study was to compare spirometric values obtained with different types of spirometers, spirometers of same type, and repeated measurements with the same spirometer in a pulmonary function laboratory setting.
Results: 12 healthy volunteers performed spirometry on four hot-wire (SensorMedics), two ultrasonic (Spirare) and one wedge-bellows (Vitalograph S) spirometers, according to ATS/ERS (American Thoracic Society/European Respiratory Society) guidelines. Spirometric values were compared using linear mixed models analysis with a random intercept for subjects and a fixed effect for type of spirometer used.
The aim was to evaluate susceptibility of oropharyngeal contamination with various bronchoscopic sampling techniques. 67 patients with obstructive lung disease and 58 control subjects underwent bronchoscopy with small-volume lavage (SVL) through the working channel, protected bronchoalveolar lavage (PBAL) and bilateral protected specimen brush (PSB) sampling. Subjects also provided an oral wash (OW) sample, and negative control samples were gathered for each bronchoscopy procedure.
View Article and Find Full Text PDFBackground: The small-molecule MDM2 antagonist nutlin-3 has proved to be an effective p53 activating therapeutic compound in several preclinical cancer models, including acute myeloid leukemia (AML). We and others have previously reported a vigorous acetylation of the p53 protein by nutlin-treatment. In this study we aimed to investigate the functional role of this p53 acetylation in nutlin-sensitivity, and further to explore if nutlin-induced protein acetylation in general could indicate novel targets for the enhancement of nutlin-based therapy.
View Article and Find Full Text PDFBackground: Recent methodological developments, in particular new sequencing methods for bacterial RNA/DNA, have shown that microorganisms reside in airways that do not suffer from acute infection and that respiratory microbiota might vary according to airways disease status. We aim to establish high-quality sampling methods for lower airways microbiota as well as describe the respiratory microbiome in subjects with and without chronic obstructive pulmonary disease (COPD) and to relate the microbiome to disease development, progression, and the host immune system.
Methods: The Bergen COPD microbiome study (MicroCOPD) is a longitudinal study aiming to collect data from 200 subjects with COPD as well as 150 individuals without COPD.
Activation of cAMP signalling potently inhibits DNA damage-induced apoptosis in acute lymphoblastic leukemia cells by promoting the turnover of p53 protein. Recently, we showed that the cAMP-induced destabilization of p53 in DNA-damaged cells occurs as a result of enhanced interaction between p53 and HDM2. In this report, we present results showing that increased levels of cAMP in cells with DNA damage enhances the deacetylation of p53, an event that facilitates the interaction of p53 with HDM2, thus annulling the stabilizing effect of DNA damage on p53.
View Article and Find Full Text PDFMyeloid leukemias are a heterogeneous group of diseases originating from bone marrow myeloid progenitor cells. Patients with myeloid leukemias can achieve long-term survival through targeted therapy, cure after intensive chemotherapy or short-term survival because of highly chemoresistant disease. Therefore, despite the development of advanced molecular diagnostics, there is an unmet need for efficient therapy that reflects the advanced diagnostics.
View Article and Find Full Text PDFBackground: Acute myeloid leukemia (AML) cells are characterized by non-mutated TP53, high levels of Hdm2, and frequent mutation of the Flt3 receptor tyrosine kinase. The juxtamembrane mutation of FLT3 is the strongest independent marker for disease relapse and is associated with elevated Bcl-2 protein and p53 hyper-phosphorylation in AML. DNA damage forms the basic mechanism of cancer cell eradication in current therapy of AML.
View Article and Find Full Text PDFThe anti-oncogene TP53 is frequently mutated in human cancer, but in hematological malignancies this is a rare feature. In acute myeloid leukemia (AML) more than 90% of the patients comprise wild type TP53 in their cancer cells, but if TP53 is mutated or deleted the disease is often found to be chemoresistant. In this review we define proteomics of the oncogene product p53 as the study of proteins in the p53 regulating signaling networks, as well as the protein study of members of the p53 family itself.
View Article and Find Full Text PDFBackground: Two-dimensional gel electrophoresis (2DE) is a powerful technique to examine post-translational modifications of complexly modulated proteins. Currently, spot detection is a necessary step to assess relations between spots and biological variables. This often proves time consuming and difficult when working with non-perfect gels.
View Article and Find Full Text PDF