Publications by authors named "Ingunn Holen"

MAF amplification increases the risk of breast cancer (BCa) metastasis through mechanisms that are still poorly understood yet have important clinical implications. Oestrogen-receptor-positive (ER) BCa requires oestrogen for both growth and metastasis, albeit by ill-known mechanisms. Here we integrate proteomics, transcriptomics, epigenomics, chromatin accessibility and functional assays from human and syngeneic mouse BCa models to show that MAF directly interacts with oestrogen receptor alpha (ERα), thereby promoting a unique chromatin landscape that favours metastatic spread.

View Article and Find Full Text PDF

CDK 4/6 inhibitors have demonstrated significant improved survival for patients with estrogen receptor (ER) positive breast cancer (BC). However, the ability of these promising agents to inhibit bone metastasis from either ER+ve or triple negative BC (TNBC) remains to be established. We therefore investigated the effects of the CDK 4/6 inhibitor, palbociclib, using in vivo models of breast cancer bone metastasis.

View Article and Find Full Text PDF

The 2 Nutrition and Cancer Networking Meeting '' was held at Newcastle University in May 2022, with support from the Nutrition Society and British Association for Cancer Research. The first meeting in this series was held in Sheffield in 2019. The aim of this joint meeting was to bring together researchers with an interest in nutrition and breast cancer, with the programme spanning topics from risk and prevention to nutrition during treatment and beyond.

View Article and Find Full Text PDF

Triple negative breast cancer (TNBC) cells lack expression of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER-2). Thus, TNBC does not respond to hormone-based therapy. TNBC is also an aggressive subtype associated with poorer prognoses compared to other breast cancers.

View Article and Find Full Text PDF

Mechanically dependent processes are essential in cancer metastases. However, reliable mechanical characterization of metastatic cancer remains challenging whilst maintaining the tissue complexity and an intact sample. Using atomic force microscopy, we quantified the micro-mechanical properties of relatively intact metastatic breast tumours and their surrounding bone microenvironment isolated from mice, and compared with other breast cancer models both and .

View Article and Find Full Text PDF

Metastatic recurrence, the major cause of breast cancer mortality, is driven by reactivation of dormant disseminated tumour cells that are defined by mitotic quiescence and chemoresistance. The molecular mechanisms underpinning mitotic quiescence in cancer are poorly understood, severely limiting the development of novel therapies for removal of residual, metastasis-initiating tumour cells. Here, we present a molecular portrait of the quiescent breast cancer cell transcriptome across the four main breast cancer sub-types (luminal, HER2-enriched, basal-like and claudin-low) and identify a novel quiescence-associated 22-gene signature using an established lipophilic-dye (Vybrant DiD) retention model and whole-transcriptomic profiling (mRNA-Seq).

View Article and Find Full Text PDF

Metastatic breast cancer in bone is incurable and there is an urgent need to develop new therapeutic approaches to improve survival. Key to this is understanding the mechanisms governing cancer cell survival and growth in bone, which involves interplay between malignant and accessory cell types. Here, we performed a cellular and molecular comparison of the bone microenvironment in mouse models representing either metastatic indolence or growth, to identify mechanisms regulating cancer cell survival and fate.

View Article and Find Full Text PDF

Skeletal metastases are frequent complications of many cancers, causing bone complications (fractures, bone pain, disability) that negatively affect the patient's quality of life. Here, we first discuss the burden of skeletal complications in cancer bone metastasis. We then describe the pathophysiology of bone metastasis.

View Article and Find Full Text PDF

Bones are structurally heterogeneous organs with diverse functions that undergo mechanical stimuli across multiple length scales. Mechanical characterization of the bone microenvironment is important for understanding how bones function in health and disease. Here, we describe the mechanical architecture of cortical bone, the growth plate, metaphysis, and marrow in fresh murine bones, probed using atomic force microscopy in physiological buffer.

View Article and Find Full Text PDF

Epithelial to mesenchymal transition (EMT) is a dynamic process that drives cancer cell plasticity and is thought to play a major role in metastasis. Here we show, using MDA-MB-231 cells as a model, that the plasticity of at least some metastatic breast cancer cells is dependent on the transcriptional co-regulator CBFβ. We demonstrate that CBFβ is essential to maintain the mesenchymal phenotype of triple-negative breast cancer cells and that CBFβ-depleted cells undergo a mesenchymal to epithelial transition (MET) and re-organise into acini-like structures, reminiscent of those formed by epithelial breast cells.

View Article and Find Full Text PDF

Background: Late-stage breast cancer preferentially metastasises to bone; despite advances in targeted therapies, this condition remains incurable. The lack of clinically relevant models for studying breast cancer metastasis to a human bone microenvironment has stunted the development of effective treatments for this condition. To address this problem, we have developed humanised mouse models in which breast cancer patient-derived xenografts (PDXs) metastasise to human bone implants with low variability and high frequency.

View Article and Find Full Text PDF

Breast cancer (BC) is one of the leading causes of cancer-related deaths worldwide. Standard therapies aim to disrupt pathways that regulate the growth and survival of BC cells. Therapeutic agents such as endocrine therapy target hormone dependent cancer cells and have shown to be suitable approaches in BC treatment.

View Article and Find Full Text PDF

Zoledronic acid (ZOL) is an antiresorptive drug used to prevent bone loss in a variety of conditions, acting mainly through suppression of osteoclast activity. There is growing evidence that ZOL can also affect cells of the mesenchymal lineage in bone. We present novel data revealing significant changes in the abundance of perivascular mesenchymal stromal cells (MSCs)/osteoprogenitors and osteoblasts following the injection of ZOL, .

View Article and Find Full Text PDF

Background: Bone metastasis is one of the most common complications of advanced breast cancer. During dissemination to bone, breast cancer cells locate in a putative 'metastatic niche', a microenvironment that regulates the colonisation, maintenance of tumour cell dormancy and subsequent tumour growth. The precise location and composition of the bone metastatic niche is not clearly defined.

View Article and Find Full Text PDF

Purpose: Breast cancer bone metastases are incurable, highlighting the need for new therapeutic targets. After colonizing bone, breast cancer cells remain dormant, until signals from the microenvironment stimulate outgrowth into overt metastases. Here we show that endogenous production of IL1B by tumor cells drives metastasis and growth in bone.

View Article and Find Full Text PDF

Metastatic recurrence in breast cancer is a major cause of mortality and often occurs many years after removal of the primary tumour. This process is driven by the reactivation of disseminated tumour cells that are characterised by mitotic quiescence and chemotherapeutic resistance. The ability to reliably isolate and characterise this cancer cell population is critical to enable development of novel therapeutic strategies for prevention of breast cancer recurrence.

View Article and Find Full Text PDF

Breast cancer cells colonize the skeleton by homing to specific niches, but the involvement of osteoblasts in tumour cell seeding, colonization, and progression is unknown. We used an in vivo model to determine how increasing the number of cells of the osteoblast lineage with parathyroid hormone (PTH) modified subsequent skeletal colonization by breast cancer cells. BALB/c nude mice were injected for five consecutive days with PBS (control) or PTH and then injected with DiD-labelled breast cancer cells via the intra-cardiac route.

View Article and Find Full Text PDF

The presence of disseminated tumor cells in breast cancer patient bone marrow aspirates predicts decreased recurrence-free survival. Although it is appreciated that physiologic, pathologic, and therapeutic conditions impact hematopoiesis, it remains unclear whether targeting hematopoiesis presents opportunities for limiting bone metastasis. Using preclinical breast cancer models, we discovered that marrow from mice treated with the bisphosphonate zoledronic acid (ZA) are metastasis-suppressive.

View Article and Find Full Text PDF

Numerous clinical and pre-clinical studies have provided ample evidence supporting that the tumor microenvironment plays a significant role during breast cancer development, progression and in determining the therapeutic response. Areas covered: This review focuses on the evolving concept of the microenvironment as the critical participant in each step of the multi-stage process of malignant progression. Currently, only a small number of molecules form part of routine molecular diagnostics in breast caner, but microenvironment-derived biomarkers are potential additions to existing predictive and prognostic marker panels.

View Article and Find Full Text PDF

Animals studies have made significant contribution to expanding our knowledge of breast cancer. Often material is leftover and archived. SEARCHBreast provides a platform for collaborative sharing of archived material via a dedicated on-line database whereby users can both share and search available tissue.

View Article and Find Full Text PDF

Research using animal model systems has been instrumental in delivering improved therapies for breast cancer, as well as in generating new insights into the mechanisms that underpin development of the disease. A large number of different models are now available, reflecting different types and stages of the disease; choosing which one to use depends on the specific research question(s) to be investigated. Based on presentations and discussions from leading experts who attended a recent workshop focused on models of breast cancer, this article provides a perspective on the many varied uses of these models in breast cancer research, their strengths, associated challenges and future directions.

View Article and Find Full Text PDF

Background: The bone-targeting agent zoledronic acid (ZOL) increases breast cancer survival in subsets of patients, but the underlying reasons for this protective effect are unknown. ZOL modulates the activity of osteoclasts and osteoblasts, which form hematopoietic stem cell niches, and therefore may affect hematopoietic cells that play a role in breast cancer progression.

Method: Immunocompetent and immunocompromised strains of mice commonly used for breast cancer research were injected with a single, clinically relevant dose of ZOL (100 μg/kg) or vehicle control.

View Article and Find Full Text PDF

While significant medical breakthroughs have been achieved through using animal models, our experience shows that often there is surplus material remaining that is frequently never revisited but could be put to good use by other scientists. Recognising that most scientists are willing to share this material on a collaborative basis, it makes economic, ethical, and academic sense to explore the option to utilise this precious resource before generating new/additional animal models and associated samples. To bring together those requiring animal tissue and those holding this type of archival material, we have devised a framework called Sharing Experimental Animal Resources, Coordinating Holdings (SEARCH) with the aim of making remaining material derived from animal studies in biomedical research more visible and accessible to the scientific community.

View Article and Find Full Text PDF

Multiple factors influence the survival of disseminated breast tumour cells (DTCs) in bone. Whereas gene signature studies have identified genes that predict a propensity of tumours to metastasise to bone, the bone environment is key in determining the fate of these tumour cells. Breast cancer cells locate to specific niches within the bone that support their survival, regulated by host factors within the bone microenvironment including bone cells, cells of the bone micro vasculature, immune cells and the extracellular matrix.

View Article and Find Full Text PDF