Publications by authors named "Ingrida Olendraite"

RNA viruses are abundant and highly diverse and infect all or most eukaryotic organisms. However, only a tiny fraction of the number and diversity of RNA virus species have been catalogued. To cost-effectively expand the diversity of known RNA virus sequences, we mined publicly available transcriptomic data sets.

View Article and Find Full Text PDF
Article Synopsis
  • Distinct SARS-CoV-2 lineage B.1.620 was identified in Lithuania, featuring multiple mutations in the spike protein commonly found in concerning variants like E484K and S477N.
  • The study highlights the lineage's potential resistance to neutralizing antibodies and documents local instances of transmission in Europe, particularly in Lithuania.
  • Evidence suggests that B.1.620 likely originated in Central Africa, supported by advanced phylogeographic methods and travel history data from infected individuals.
View Article and Find Full Text PDF

The International Virus Bioinformatics Meeting 2020 was originally planned to take place in Bern, Switzerland, in March 2020. However, the COVID-19 pandemic put a spoke in the wheel of almost all conferences to be held in 2020. After moving the conference to 8-9 October 2020, we got hit by the second wave and finally decided at short notice to go fully online.

View Article and Find Full Text PDF

Positive-sense single-stranded RNA viruses form the largest and most diverse group of eukaryote-infecting viruses. Their genomes comprise one or more segments of coding-sense RNA that function directly as messenger RNAs upon release into the cytoplasm of infected cells. Positive-sense RNA viruses are generally accepted to encode proteins solely on the positive strand.

View Article and Find Full Text PDF

Polycipiviridae is a family of picorna-like viruses with non-segmented, linear, positive-sense RNA genomes of approximately 10-12 kb. Unusually for viruses within the order Picornavirales, their genomes are polycistronic, with four (or more) consecutive 5'-proximal open reading frames (ORFs) encoding structural (and possibly other) proteins and a long 3' ORF encoding the replication polyprotein. Members of species within the family have all been detected in ants or via arthropod transcriptomic datasets.

View Article and Find Full Text PDF

Solinviviridae is a family of picorna/calici-like viruses with non-segmented, linear, positive-sense RNA genomes of approximately 10-11 kb. Unusually, their capsid proteins are encoded towards the 3'-end of the genome where they can be expressed both from a subgenomic RNA and as an extension of the replication (picorna-like helicase-protease-polymerase) polyprotein. Members of two species within the family infect ants, but related unclassified virus sequences derive from a large variety of insects and other arthropods.

View Article and Find Full Text PDF

Three novel RNA viruses, named Formica fusca virus 1 (GenBank accession no. MH477287), Lasius neglectus virus 2 (MH477288) and Myrmica scabrinodis virus 2 (MH477289), were discovered in ants collected in Cambridge, UK. The proposed virus names were given based on the hosts in which they were identified.

View Article and Find Full Text PDF

Solenopsis invicta virus 2 is a single-stranded positive-sense picorna-like RNA virus with an unusual genome structure. The monopartite genome of approximately 11 kb contains four open reading frames in its 5' third, three of which encode proteins with homology to picornavirus-like jelly-roll fold capsid proteins. These are followed by an intergenic region, and then a single long open reading frame that covers the 3' two-thirds of the genome.

View Article and Find Full Text PDF

Archaeal fibrillarin (aFib) is a well-characterized -adenosyl methionine (SAM)-dependent RNA 2'--methyltransferase that is known to act in a large C/D ribonucleoprotein (RNP) complex together with Nop5 and L7Ae proteins and a box C/D guide RNA. In the reaction, the guide RNA serves to direct the methylation reaction to a specific site in tRNA or rRNA by sequence complementarity. Here we show that a aFib-Nop5 heterodimer can alone perform SAM-dependent 2'--methylation of 16S and 23S ribosomal RNAs in vitro independently of L7Ae and C/D guide RNAs.

View Article and Find Full Text PDF