Hydrogels, three-dimensional hydrophilic polymeric networks with high water retaining capacity, have gained prominence in wound management and drug delivery due to their tunability, softness, permeability, and biocompatibility. Electron-beam polymerized poly(ethylene glycol) diacrylate (PEGDA) hydrogels are particularly useful for phototherapies such as antimicrobial photodynamic therapy (aPDT) due to their excellent optical properties. This work takes advantage of the transparency of PEGDA hydrogels to investigate bacterial responses to aPDT at the single-cell level, in real-time and .
View Article and Find Full Text PDFMin oscillations are a fascinating mechanism used by to find their middle. Beyond their biological role, they provide a convenient and relatively unexplored method to monitor the effect of sublethal environmental challenges on bacterial physiology in real-time and at the single-cell level. In this review, we discuss the original papers that put forward the idea of using Min oscillations as a reporting tool to monitor the effect of extracellular cationic compounds, including antibiotics.
View Article and Find Full Text PDFThe Min protein system is a cell division regulator in . Under normal growth conditions, MinD is associated with the membrane and undergoes pole-to-pole oscillations. The period of these oscillations has been previously proposed as a reporter for the bacterial physiological state at the single-cell level and has been used to monitor the response to sublethal challenges from antibiotics, temperature, or mechanical fatigue.
View Article and Find Full Text PDF