The primary goals of the Patient Protection and Affordable Care Act are to expand insurance coverage through an individual mandate, and to reduce growing healthcare costs through new risk-based payment models and the formation of ACOs. With the high cost of exams and steady growth through the last decade, imaging appears to be a prime target for savings under accountable care. Given that some of the reform payment models are set to begin as early as next year, and private payers are increasingly instituting similar risk-based payment models in their plans, it is critical for imaging leaders to understand how these models will affect their growth strategy and prepare accordingly.
View Article and Find Full Text PDFThe gamma-aminobutyric acid (GABA) type A receptor (GABA(A)R) is the major inhibitory neurotransmitter receptor in the brain. Its multiple subunits show regional, developmental, and disease-related plasticity of expression; however, the regulatory networks controlling GABA(A)R subunit expression remain poorly understood. We report that the seizure-induced decrease in GABA(A)R alpha1 subunit expression associated with epilepsy is mediated by the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway regulated by brain-derived neurotrophic factor (BDNF).
View Article and Find Full Text PDFThe regulated expression of type A gamma-aminobutyric acid (GABA) receptor (GABA(A)R) subunit genes plays a critical role in neuronal maturation and synaptogenesis. It is also associated with a variety of neurological diseases. Changes in GABA(A) receptor alpha1 subunit gene (GABRA1) expression have been reported in animal models of epilepsy, alcohol abuse, withdrawal, and stress.
View Article and Find Full Text PDFDifferential expression of GABA(A) receptor (GABR) subunits has been demonstrated in hippocampus from patients and animals with temporal lobe epilepsy (TLE), but whether these changes are important for epileptogenesis remains unknown. Previous studies in the adult rat pilocarpine model of TLE found reduced expression of GABR alpha1 subunits and increased expression of alpha4 subunits in dentate gyrus (DG) of epileptic rats compared with controls. To investigate whether this altered subunit expression is a critical determinant of spontaneous seizure development, we used adeno-associated virus type 2 containing the alpha4 subunit gene (GABRA4) promoter to drive transgene expression in DG after status epilepticus (SE).
View Article and Find Full Text PDFPurpose: Previous studies in neonatal (postnatal day 10) and adult rats suggest that status epilepticus (SE) induces changes in the alpha1 subunit of the GABA(A) receptor (GABRA1) in dentate granule neurons (DGNs) that are age dependent and vary inversely with the likelihood of epilepsy development. In the present study, we examined GABRA1 expression after SE at postnatal day 20 (P20), an intermediate age when only a subset of SE-exposed animals develop epilepsy.
Methods: SE was induced with lithium-pilocarpine or kainate at P20.
Altered function of gamma-aminobutyric acid type A receptors (GABA(A)Rs) in dentate granule cells of the hippocampus has been associated with temporal lobe epilepsy (TLE) in humans and in animal models of TLE. Such altered receptor function (including increased inhibition by zinc and lack of modulation by benzodiazepines) is related, in part, to changes in the mRNA levels of certain GABA(A)R subunits, including alpha4, and may play a role in epileptogenesis. The majority of GABA(A)Rs that contain alpha4 subunits are extra-synaptic due to lack of the gamma2 subunit and presence of delta.
View Article and Find Full Text PDF