Magnetic nanoparticles (MNPs) have gained significant attention in biomedical engineering and imaging applications due to their unique magnetic and mechanical properties. With their high magnetization and small size, MNPs serve as excitation sources for magnetically heating to destroy tumors (magnetic hyperthermia) and magnetically controlled drug carriers in magnetic drug targeting. However, effectively visualizing the distribution of MNPs during research or potential clinical use with low-cost modalities remains a critical challenge.
View Article and Find Full Text PDFRadio detection and ranging-based (radar) sensing offers unique opportunities for biomedical monitoring and can help overcome the limitations of currently established solutions. Due to its contactless and unobtrusive measurement principle, it can facilitate the longitudinal recording of human physiology and can help to bridge the gap from laboratory to real-world assessments. However, radar sensors typically yield complex and multidimensional data that are hard to interpret without domain expertise.
View Article and Find Full Text PDFSensors (Basel)
November 2023
In classical radar imaging, such as in Earth remote sensing, electromagnetic waves are usually assumed to propagate in free space. However, in numerous applications, such as ground penetrating radar or non-destructive testing, this assumption no longer holds. When there is a multi-material background, the subsurface image reconstruction becomes considerably more complex.
View Article and Find Full Text PDFHistorical documents contain essential information about the past, including places, people, or events. Many of these valuable cultural artifacts cannot be further examined due to aging or external influences, as they are too fragile to be opened or turned over, so their rich contents remain hidden. Terahertz (THz) imaging is a nondestructive 3D imaging technique that can be used to reveal the hidden contents without damaging the documents.
View Article and Find Full Text PDF