Viral infections, including those caused by COVID-19, can produce striking morphologic changes in peripheral blood. Distinguishing between reactive changes and abnormal morphology of monocytes remains particularly difficult, with low consensus rates reported amongst hematopathologists. Here, we report a patient who developed transient monocytosis of 11.
View Article and Find Full Text PDFObjectives: To describe the patient characteristics, clinical management, and infectious etiology in critically ill children with bronchiolitis. The secondary objective was to determine the association between antibiotic use and hospital length of stay among patients without concomitant bacterial infections.
Methods: Retrospective cohort study including patients ≤2 years old with bronchiolitis admitted to 3 Canadian pediatric intensive care units between 2016 and 2018.
We present the case of a 50-year-old man presenting with new heart failure symptoms. He had no evidence of any ischaemic cardiomyopathy, however, further cardiac imaging showed a left ventricular non-compaction cardiomyopathy. He was noted to have muscular weakness and an exhaustive search for associated comorbidities yielded a diagnosis of Becker muscular dystrophy.
View Article and Find Full Text PDFALK-positive histiocytosis is a rare subtype of histiocytic neoplasm first described in 2008 in 3 infants with multisystemic disease involving the liver and hematopoietic system. This entity has subsequently been documented in case reports and series to occupy a wider clinicopathologic spectrum with recurrent KIF5B-ALK fusions. The full clinicopathologic and molecular spectra of ALK-positive histiocytosis remain, however, poorly characterized.
View Article and Find Full Text PDFObjectives: To determine the association between the implementation of an antimicrobial stewardship program at a local PICU and to determine the association between the presence of an antimicrobial stewardship programs and antimicrobial use across three Canadian PICUs, among critically ill children with bronchiolitis.
Design: A multicenter retrospective cohort study.
Setting: Three Canadian PICUs over two winter seasons.
Given the increasing prevalence of obesity and the metabolic syndrome, identification of intrinsic molecular programs responsible for ensuring fuel homeostasis and preventing metabolic disease is needed. We investigated whether the orphan nuclear receptor estrogen-related receptor α (ERRα), a major regulator of energy metabolism, plays a role in lipid homeostasis and the development of nonalcoholic fatty liver disease (NAFLD) in response to chronic high-fat diet (HFD) consumption and long-term fasting. Systemic ablation of ERRα in mice demonstrated clear beneficial effects for loss of ERRα function in protection from HFD-provoked body weight gain manifested not only from a reduction in white adipose tissue stores but also from an impediment in intrahepatic lipid accumulation.
View Article and Find Full Text PDF5α-Reductase types 1 and 2, encoded by SRD5A1 and SRD5A2, are the two enzymes that can catalyze the conversion of testosterone to dihydrotestosterone, the most potent androgen receptor (AR) agonist in prostate cells. 5α-Reductase type 2 is the predominant isoform expressed in the normal prostate. However, its expression decreases during prostate cancer (PCa) progression, whereas SRD5A1 increases, and the mechanism underlying this transcriptional regulatory switch is still unknown.
View Article and Find Full Text PDFTranslational control of gene expression plays a key role during the early phases of embryonic development. Here we describe a transcriptional regulator of mouse embryonic stem cells (mESCs), Yin-yang 2 (YY2), that is controlled by the translation inhibitors, Eukaryotic initiation factor 4E-binding proteins (4E-BPs). YY2 plays a critical role in regulating mESC functions through control of key pluripotency factors, including Octamer-binding protein 4 (Oct4) and Estrogen-related receptor-β (Esrrb).
View Article and Find Full Text PDFDespite the initial benefits of treating HER2-amplified breast cancer patients with the tyrosine kinase inhibitor lapatinib, resistance inevitably develops. Here we report that lapatinib induces the degradation of the nuclear receptor ERRα, a master regulator of cellular metabolism, and that the expression of ERRα is restored in lapatinib-resistant breast cancer cells through reactivation of mTOR signalling. Re-expression of ERRα in resistant cells triggers metabolic adaptations favouring mitochondrial energy metabolism through increased glutamine metabolism, as well as ROS detoxification required for cell survival under therapeutic stress conditions.
View Article and Find Full Text PDFJ Steroid Biochem Mol Biol
March 2016
The identification of two genes encoding polypeptides with structural features common with the estrogen receptor more than a quarter century ago, referred to as the estrogen-related receptors (ERRs), subsequently led to the discovery of several previously unrecognized hormone responsive systems through the application of reverse endocrinology. Paradoxically, the natural ligand(s) associated with members of the ERR subfamily remains to be identified. While initial studies on the mode of action and physiological functions of the ERRs focused on interaction with estrogen signalling in breast cancer, subsequent work showed that the ERRs are ubiquitous master regulators of cellular energy metabolism.
View Article and Find Full Text PDFMuscle fitness is an important determinant of health and disease. However, the molecular mechanisms involved in the coordinate regulation of the metabolic and structural determinants of muscle endurance are still poorly characterized. Herein, we demonstrate that estrogen-related receptor α (ERRα, NR3B1) is essential for skeletal muscle fitness.
View Article and Find Full Text PDFThe most common mechanism of resistance to aminoglycoside antibiotics entails bacterial expression of drug-metabolizing enzymes, such as the clinically widespread aminoglycoside N-6'-acetyltransferase (AAC(6')). Aminoglycoside-CoA bisubstrates are highly potent AAC(6') inhibitors; however, their inability to penetrate cells precludes in vivo studies. Some truncated bisubstrates are known to cross cell membranes, yet their activities against AAC(6') are in the micromolar range at best.
View Article and Find Full Text PDF