Effective antiviral immunity depends on the ability of infected cells or cells triggered with virus-derived nucleic acids to produce type I interferon (IFN), which activates transcription of numerous antiviral genes. However, disproportionately strong or chronic IFN expression is a common cause of inflammatory and autoimmune diseases. We describe an epigenetic mechanism that determines cell type-specific differences in IFN and IFN-stimulated gene (ISG) expression in response to exogenous signals.
View Article and Find Full Text PDFEpigenetic gene silencing in eukaryotes is regulated in part by lysine methylation of the core histone proteins. While histone lysine methylation is known to control gene expression through the recruitment of modification-specific effector proteins, it remains unknown whether nonhistone chromatin proteins are targets for similar modification-recognition systems. Here we show that the histone H3 methyltransferase G9a contains a conserved methylation motif with marked sequence similarity to H3 itself.
View Article and Find Full Text PDFBinding of microRNA (miRNA) to mRNA within the RNA-induced silencing complex (RISC) leads to either translational inhibition or to destruction of the target mRNA. Both of these functions are executed by Argonaute 2 (Ago2). Using hematopoiesis in mice as a model system to study the physiological function of Ago2 in vivo, we found that Ago2 controls early development of lymphoid and erythroid cells.
View Article and Find Full Text PDFLytic granule exocytosis is the major pathway used by CD8+ CTL to kill virally infected and tumor cells. Despite the obvious importance of this pathway in adaptive T cell immunity, the molecular identity of enzymes involved in the regulation of this process is poorly characterized. One signal known to be critical for the regulation of granule exocytosis-mediated cytotoxicity in CD8+ T cells is Ag receptor-induced activation of protein kinase C (PKC).
View Article and Find Full Text PDFB cell life depends critically on the cytokine B cell-activating factor of the tumor necrosis factor family (BAFF). Lack of BAFF signaling leads to B cell death and immunodeficiency. Excessive BAFF signaling promotes lupus-like autoimmunity.
View Article and Find Full Text PDFBalanced activity of pro- and anti-inflammatory cytokines during innate immune responses is required to allow effective host defense while avoiding tissue damage and autoimmunity. Induction of cytokine production after recognition of pathogen-associated molecular patterns (PAMPs) by innate immune cells has been well demonstrated, but modulation of cytokine function by PAMPs is not well understood. In this study we show that stimulation of macrophages with zymosan, which contains PAMPs derived from yeast, rapidly extinguished macrophage responses to IL-10, a suppressive cytokine that limits inflammatory tissue damage but also compromises host defense.
View Article and Find Full Text PDFCytokine signaling by the Jak-STAT pathway is subject to complex negative regulation that limits the amplitude and duration of signal transduction. Inhibition of signaling also mediates negative crosstalk, whereby factors with opposing biological activities crossinhibit each other's function. Here, we investigated a rapidly inducible mechanism that inhibited Jak-STAT activation by IFN-alpha, a cytokine that is important for antiviral responses, growth control, and modulation of immune responses.
View Article and Find Full Text PDFApproximately 65% of B cells generated in human bone marrow are potentially harmful autoreactive B cells. Most of these cells are clonally deleted in the bone marrow, while those autoreactive B cells that escape to the periphery are anergized or perish before becoming mature B cells. Escape of self-reactive B cells from tolerance permits production of pathogenic auto-antibodies; recent studies suggest that extended B lymphocyte survival is a cause of autoimmune disease in mice and humans.
View Article and Find Full Text PDFThe cAMP-response element-binding protein (CREB) is activated by phosphorylation on Ser-133 and plays a key role in the proliferative and survival responses of mature B cells to B cell receptor (BCR) signaling. The signal link between the BCR and CREB activation depends on a phorbol ester (phorbol 12-myristate 13-acetate)-sensitive protein kinase C (PKC) activity and not protein kinase A or calmodulin kinase; however, the identity and role of the PKC(s) activity has not been elucidated. We found the novel PKCdelta (nPKCdelta) activator bistratene A is sufficient to induce CREB phosphorylation in murine splenic B cells.
View Article and Find Full Text PDFInterleukin-10 is a predominantly anti-inflammatory cytokine that inhibits macrophage and dendritic cell function, but can acquire proinflammatory activity during immune responses. We investigated whether type I IFNs, which are elevated during infections and in autoimmune diseases, modulate the activity of IL-10. Priming of primary human macrophages with low concentrations of IFN-alpha diminished the ability of IL-10 to suppress TNF-alpha production.
View Article and Find Full Text PDFThe survival of mature resting B cells in the periphery depends on signaling from the B-cell receptor (BCR) and the B-cell activating factor of the TNF family receptor (BAFF-R). Engagement of both receptors promotes NF-kappa B activity, which contributes to B-cell survival through different pathways. BCR signaling leads to activation of the inhibitor of NF-kappa B kinase (IKK) complex via Carma1, Bcl10 and MALT1, whereas BAFF-R engagement promotes processing of NF-kappa B2 protein p100, which is dependent on NF-kappa B-inducing kinase (NIK) and IKK alpha.
View Article and Find Full Text PDFBam32 is an adaptor protein recruited to the plasma membrane upon B cell receptor (BCR) crosslinking in a phosphoinositol 3-kinase (PI3K)-dependent manner; however, its physiologic function is unclear. To determine its physiologic function, we produced Bam32-deficient mice. Bam32(-/-) B cells develop normally but have impaired T-independent antibody responses in vivo and diminished responses to BCR crosslinking in vitro.
View Article and Find Full Text PDFInterleukin-10 (IL-10) is a potent deactivator of myeloid cells that limits the intensity and duration of immune and inflammatory responses. The activity of IL-10 can be suppressed during inflammation, infection, or after allogeneic tissue transplantation. We investigated whether inflammatory factors suppress IL-10 activity at the level of signal transduction.
View Article and Find Full Text PDFProtein kinase C (PKC) is a family of serine/threonine kinases which mediate essential cellular signals required for activation, proliferation, differentiation, and survival. Several PKC members are expressed in B lineage cells and activated by stimulation of the B cell receptor (BCR), thus suggesting a contribution of PKCs to the B cell-mediated immune response. To understand the individual roles of PKCs for B cell immunity, mice deficient for PKCbetaI/II (PKCbeta) or PKCdelta were analyzed.
View Article and Find Full Text PDFActivation of the nuclear factor (NF)-kappaB transcription complex by signals derived from the surface expressed B cell antigen receptor controls B cell development, survival, and antigenic responses. Activation of NF-kappaB is critically dependent on serine phosphorylation of the IkappaB protein by the multi-component IkappaB kinase (IKK) containing two catalytic subunits (IKKalpha and IKKbeta) and one regulatory subunit (IKKgamma). Using mice deficient for protein kinase C beta (PKCbeta) we show an essential role of PKCbeta in the phosphorylation of IKKalpha and the subsequent activation of NF-kappaB in B cells.
View Article and Find Full Text PDFInteraction of a B cell expressing self-specific B-cell antigen receptor (BCR) with an auto-antigen results in either clonal deletion or functional inactivation. Both of these processes lead to B-cell tolerance and are essential for the prevention of auto-immune diseases. Whereas clonal deletion results in the death of developing autoreactive B cells, functional inactivation of self-reactive B lymphocytes leads to complex changes in the phenotype of peripheral B cells, described collectively as anergy.
View Article and Find Full Text PDF