Publications by authors named "Ingrid M Lubbers"

Earthworms have been perceived as benevolent soil engineers since the time of Charles Darwin, but several recent syntheses link earthworm activities to higher greenhouse gas emissions, less soil biodiversity, and inferior plant defense against pests. Our study provides new field-based evidence of the multiple direct and indirect impacts of earthworms on ecosystem functions within an ecological multifunctionality framework (i.e.

View Article and Find Full Text PDF

Soil faunal activity can be a major control of greenhouse gas (GHG) emissions from soil. Effects of single faunal species, genera or families have been investigated, but it is unknown how soil fauna diversity may influence emissions of both carbon dioxide (CO , end product of decomposition of organic matter) and nitrous oxide (N O, an intermediate product of N transformation processes, in particular denitrification). Here, we studied how CO and N O emissions are affected by species and species mixtures of up to eight species of detritivorous/fungivorous soil fauna from four different taxonomic groups (earthworms, potworms, mites, springtails) using a microcosm set-up.

View Article and Find Full Text PDF

Concerns about rising greenhouse gas (GHG) concentrations have spurred the promotion of no-tillage practices as a means to stimulate carbon storage and reduce CO2 emissions in agro-ecosystems. Recent research has ignited debate about the effect of earthworms on the GHG balance of soil. It is unclear how earthworms interact with soil management practices, making long-term predictions on their effect in agro-ecosystems problematic.

View Article and Find Full Text PDF

To meet the challenge of feeding a growing world population with minimal environmental impact, we need comprehensive and quantitative knowledge of ecological factors affecting crop production. Earthworms are among the most important soil dwelling invertebrates. Their activity affects both biotic and abiotic soil properties, in turn affecting plant growth.

View Article and Find Full Text PDF

Earthworm activity is known to increase emissions of nitrous oxide (N(2)O) from arable soils. Earthworm gut, casts, and burrows have exhibited higher denitrification activities than the bulk soil, implicating priming of denitrifying organisms as a possible mechanism for this effect. Furthermore, the earthworm feeding strategy may drive N(2)O emissions, as it determines access to fresh organic matter for denitrification.

View Article and Find Full Text PDF