Publications by authors named "Ingrid Leguerney"

Article Synopsis
  • * A contrast agent called BR55, made of gas-core lipid microbubbles, targets VEGFR-2 and was tested through ultrasound molecular imaging (USMI) alongside traditional immunohistochemical (IHC) staining on patient-derived xenografts (PdX) in mice.
  • * The study found strong correlations between USMI results and IHC staining, suggesting that BR55 can provide quick, quantitative insights into VEGFR-2 levels in tumors, allowing for non-invasive characterization of renal
View Article and Find Full Text PDF

Background: The DCE-US (Dynamic Contrast-Enhanced Ultrasonography) imaging protocol predicts the vascular modifications compared with Response Evaluation Criteria in Solid Tumors (RECIST) based mainly on morphological changes. A quantitative biomarker has been validated through the DCE-US multi-centric study for early monitoring of the efficiency of anti-angiogenic cancer treatments. In this context, the question of transposing the use of this biomarker to other types of ultrasound scanners, probes and settings has arisen to maintain the follow-up of patients under anti-angiogenic treatments.

View Article and Find Full Text PDF

Carbonic Anhydrase IX (CAIX) is a well-described enzyme in renal cell carcinoma, with its expression being regulated by the hypoxia-inducible factor 1 alpha, it is known for interfering with hypoxia processes. Renal carcinoma encompasses a broad spectrum of histological entities and is also described as a heterogeneous malignant tumor. Recently, various combinations of checkpoint inhibitors and targeted therapies have been validated to manage this disease.

View Article and Find Full Text PDF

Recent treatment developments for metastatic renal cell carcinoma offer combinations of immunotherapies or immunotherapy associated with tyrosine kinase inhibitors (TKI). There is currently no argument to choose one solution or another. Easy-to-use markers to assess longitudinal responses to TKI are necessary to determine when to switch to immunotherapies.

View Article and Find Full Text PDF

Optical imaging of living animals is a unique method of studying the dynamics of physiological and pathological processes at a subcellular level. One-shot acquisitions at high resolution can be achieved on exteriorized organs before animal euthanasia. For longitudinal follow-up, intravital imaging can be used and involves imaging windows implanted in cranial, thoracic or dorsal regions.

View Article and Find Full Text PDF

Dynamic contrast-enhanced ultrasonography is a recent functional dynamic imaging technique that allows evaluation of the efficacy of anti-angiogenic treatments by quantifying changes in specific parameters of the tumor vasculature. Preclinical and clinical experimental studies now reveal the existence of sources of variability in the quantitative methods. In order to study the reliability of quantification methods (both semi-quantitative and quantitative), we have developed the first numerical model of blood flow and contrast agents in vascular networks with computational fluid dynamics Fluent software version 15.

View Article and Find Full Text PDF

Tumor microvascularization is a biomarker of response to antiangiogenic treatments and is accurately assessed by ultrasound imaging. Imaging modes used to visualize slow flows include Power Doppler imaging, dynamic contrast-enhanced ultrasonography, and more recently, microvascular Doppler. Flow phantoms are used to evaluate the performance of Doppler imaging techniques, but they do not have a steady flow and sufficiently small channels.

View Article and Find Full Text PDF

Molecular magnetic resonance imaging targeted to an endothelial integrin involved in neoangiogenesis was compared to DCE-US and immunochemistry to assess the early response of three different therapeutic agents in renal cell carcinoma. Human A498 renal cells carcinoma was subcutaneously inoculated into 24 nude mice. Mice received either phosphate-buffered saline solution, sunitinib, everolimus, or bevacizumab during 4 days.

View Article and Find Full Text PDF

The standardization of ultrasound scanners for dynamic contrast-enhanced ultrasonography (DCE-US) is mandatory for evaluation of clinical multicenter studies. We propose a robust method using a phantom for measuring the variation of the harmonic signal intensity obtained from the area under the time-intensity curve versus various contrast-agent concentrations. The slope of this measured curve is the calibration parameter.

View Article and Find Full Text PDF

Expression levels of endoglin, αv integrin and vascular endothelial growth factor receptor 2 (VEGFR2) were investigated using targeted, contrast-enhanced ultrasonography in murine melanoma tumor models. Microvasculature and expression levels of biomarkers were investigated using specific contrast agents conjugated with biotinylated monoclonal antibodies. Ultrasound signal intensity from bound contrast agents was evaluated in two groups of mice: control mice and mice treated with sorafenib.

View Article and Find Full Text PDF

Objectives: The purposes of this study were to assess the reliability of parametric maps from dynamic contrast-enhanced ultrasound (DCE-US) to reflect the heterogeneous distribution of intratumoral vascularization and to predict the tissue features linked to vasculature. This study was designed to compare DCE-US parametric maps with histologic vascularity measurements.

Materials And Methods: Dynamic contrast-enhanced ultrasound was performed on 17 melanoma-bearing nude mice after a 0.

View Article and Find Full Text PDF

Background/aim: Treatment of metastatic neuroblastoma remains a challenge in pediatric oncology. Relevant preclinical models may improve exploration of oncogenesis and new therapies. We developed new orthotopic and metastatic models derived from stage 4 neuroblastoma.

View Article and Find Full Text PDF

Aim: To evaluate the sources of variation influencing the microvascularization parameters measured by dynamic contrast-enhanced ultrasonography (DCE-US).

Methods: Firstly, we evaluated, in vitro, the impact of the manual repositioning of the ultrasound probe and the variations in flow rates. Experiments were conducted using a custom-made phantom setup simulating a tumor and its associated arterial input.

View Article and Find Full Text PDF

Objectives: The purpose of this study was to investigate the impact of the arterial input on perfusion parameters measured using dynamic contrast-enhanced sonography combined with a deconvolution method after bolus injections of a contrast agent.

Methods: The in vitro experiments were conducted using a custom-made setup consisting of pumping a fluid through a phantom made of 3 intertwined silicone pipes, mimicking a complex structure akin to that of vessels in a tumor, combined with their feeding pipe, mimicking the arterial input. In the in vivo experiments, B16F10 melanoma cells were xenografted to 5 nude mice.

View Article and Find Full Text PDF

Aim: To investigate intra-operator variability of semi-quantitative perfusion parameters using dynamic contrast-enhanced ultrasonography (DCE-US), following bolus injections of SonoVue(®).

Methods: The in vitro experiments were conducted using three in-house sets up based on pumping a fluid through a phantom placed in a water tank. In the in vivo experiments, B16F10 melanoma cells were xenografted to five nude mice.

View Article and Find Full Text PDF

Background: Interstitial hypertension is responsible for poor capillary blood flow and hampered drug delivery. The efficacy of combined sorafenib/bevacizumab treatment given according to different administration schedules has been evaluated by measuring both interstitial pressure (IP) and quantitative dynamic contrast-enhanced ultrasonography (DCE-US) parameters in melanoma-bearing mice.

Material And Methods: [corrected] Sixty mice were xenografted with B16F10 melanoma.

View Article and Find Full Text PDF

200-MHz scanning acoustic microscopy (SAM) and synchrotron radiation microCT (SR-microCT) were used to assess microstructural parameters, acoustic impedance Z and tissue degree of mineralization of bone (DMB) in site-matched regions of interest in femoral bone of two inbred strains. Transverse femoral sections taken from 5 C57BL/6J@Ico (B6) and 5 C3H/HeJ@Ico (C3H) mice (5.5 months old) were explored.

View Article and Find Full Text PDF

This ex vivo study explores the relationship of ultrasonic attenuation and backscatter to dermal microarchitecture by comparing ultrasonic measurements of these parameters (11-27 MHz) to a microscopic analysis of three parameters describing the collagen distribution (mean thickness and spacing of collagen bundles along the insonification direction and the percent area occupied by collagen). Skin samples (N= 31) were obtained from patients undergoing breast or abdominal reduction surgery. Radio-frequency (rf) signals were acquired in a B-scan format using an ultrasound system developed for skin imaging (Ultrasons Technologies, Tours, France).

View Article and Find Full Text PDF

Two hundred-MHz time-resolved scanning acoustic microscopy was applied for the investigation of acoustic and structural bone properties of mice from two inbred strains. Transverse sections of femur taken from 5 C57BL/6J@Ico and 5 C3H/HeJ@Ico mice were explored. Both strains had the same bone diameter, but the C3H/HeJ@Ico mice had greater cortical thickness, smaller cancellous diameter, and greater acoustic impedance values than C57BL/6J@Ico mice.

View Article and Find Full Text PDF

Accurate clinical interpretation of the sound velocity derived from axial transmission devices requires a detailed understanding of the propagation phenomena involved and of the bone factors that have an impact on measurements. In the low megahertz range, ultrasonic propagation in cortical bone depends on anisotropic elastic tissue properties, porosity and the cortical geometry (e.g.

View Article and Find Full Text PDF