Since the first sequencing of the human genome, associated sequencing costs have dramatically lowered, leading to an explosion of genomic data. This valuable data should in theory be of huge benefit to the global community, although unfortunately the benefits of these advances have not been widely distributed. Much of today's clinical-genomic data is siloed and inaccessible in adherence with strict governance and privacy policies, with more than 97% of hospital data going unused, according to one reference.
View Article and Find Full Text PDFCurrently an in vitro model that fully recapitulates the human embryonic gonad is lacking. Here we describe a fully defined feeder-free protocol to generate early testis-like cells with the ability to be cultured as an organoid, from human induced pluripotent stem cells. This stepwise approach uses small molecules to mimic embryonic development, with upregulation of bipotential gonad markers (LHX9, EMX2, GATA4, and WT1) at day 10 of culture, followed by induction of testis Sertoli cell markers (SOX9, WT1, and AMH) by day 15.
View Article and Find Full Text PDFOvarian deficiency, including diminished ovarian reserve and premature ovarian insufficiency, represents one of the main causes of female infertility. Little is known of the genetic basis of diminished ovarian reserve, while premature ovarian insufficiency often has a genetic basis, with genes affecting various processes. NR5A1 is a key gene required for gonadal function, and variants are associated with a wide phenotypic spectrum of disorders of sexual development, and are found in 0.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFDisorders of sex development (DSDs) are conditions affecting development of the gonads or genitalia. Variants in two key genes, SRY and its target SOX9, are an established cause of 46,XY DSD, but the genetic basis of many DSDs remains unknown. SRY-mediated SOX9 upregulation in the early gonad is crucial for testis development, yet the regulatory elements underlying this have not been identified in humans.
View Article and Find Full Text PDFSeveral recent reports have described a missense variant in the gene NR5A1 (c.274C>T; p.Arg92Trp) in a significant number of 46,XX ovotesticular or testicular disorders of sex development (DSDs) cases.
View Article and Find Full Text PDFAim: Validation of sequencing-based DNA methylation data is an important step for meaningful translation of findings. However, there has been limited assessment of different platforms to validate methylation data from next generation sequencing.
Methods: We performed a comparative methylation analysis between the genome-wide platform of reduced representation bisulfite sequencing with a targeted, Sequenom EpiTyper platform (four genes were analyzed in 15 cell lines covering 52 CpG sites).
Background: Disorders of sex development (DSD) are congenital conditions in which chromosomal, gonadal, or phenotypic sex is atypical. Clinical management of DSD is often difficult and currently only 13% of patients receive an accurate clinical genetic diagnosis. To address this we have developed a massively parallel sequencing targeted DSD gene panel which allows us to sequence all 64 known diagnostic DSD genes and candidate genes simultaneously.
View Article and Find Full Text PDFIn the female gonad, distinct signalling pathways activate ovarian differentiation while repressing the formation of testes. Human disorders of sex development (DSDs), such as 46,XX DSDs, can arise when this signalling is aberrant. Here we review the current understanding of the genetic mechanisms that control gonadal development, with particular emphasis on those that drive or inhibit ovarian differentiation.
View Article and Find Full Text PDF