Tubulointerstitial fibrosis is an important component in the development of diabetic nephropathy. Various renal cell types, including fibroblasts, contribute to the excessive matrix deposition in the kidney. Although transforming growth factor-beta (TGF-beta) has been thought to play a major role during fibrosis, other growth factors are also involved.
View Article and Find Full Text PDFConnective tissue growth factor (CTGF) has recently received much attention as a possible key determinant of progressive fibrosis and excessive scarring and also of wound repair, neoangiogenesis, bone formation and embryonic development. CTGF is also up regulated in numerous fibrotic diseases, including atherosclerosis and lung-, skin-, pancreas-, liver- and kidney-fibrosis. TGFbeta induces CTGF through different signaling pathways and a specific TGFbeta responsive element in the CTGF promoter.
View Article and Find Full Text PDFBackground: The induction of excess matrix in renal fibrosis seems to be mediated, at least in part, by the transforming growth factor-beta (TGF-beta)-mediated induction of connective tissue growth factor (CTGF) in mesangial cells.
Methods: By examining CTGF protein and mRNA expression and promoter activity in the presence or absence of TGF-beta or inhibitors, the signaling pathways controlling basal and TGF-beta-induced CTGF expression in mesangial cells were investigated.
Results: TGF-beta enhances CTGF mRNA and protein expression in mesangial cells.
Background: Nitric oxide (NO) exerts complex regulatory actions on mesangial cell (MC) biology, such as inhibition of proliferation, adhesion or contractility and induction of apoptosis. In our previous studies the NO-donor S-nitroso-glutathione (GSNO) was found to be a potent inhibitor of MC growth. This effect was mediated at least in part by inhibitory effects of GSNO on the transcription factor early growth response gene-1 (Egr-1) [10].
View Article and Find Full Text PDF