Publications by authors named "Ingrid Cabrera"

"Pop goes the particle". Here we report on the preparation of redox responsive mesoporous organo-silica nanoparticles containing disulfide (S-S) bridges (ss-NPs) that, even upon the exohedral grafting of targeting ligands, retained their ability to undergo structural degradation, and increase their local release activity when exposed to a reducing agent. This degradation could be observed also inside glioma C6 cancer cells.

View Article and Find Full Text PDF

Lysosomal storage disorders (LSD) are caused by lysosomal dysfunction usually as a consequence of deficiency of a single enzyme required for the metabolism of macromolecules, such as lipids, glycoproteins, and mucopolysaccharides. For instance, the lack of α-galactosidase A (GLA) activity in Fabry disease patients causes the accumulation of glycosphingolipids in the vasculature leading to multiple organ pathology. Enzyme replacement therapy, which is the most common treatment of LSD, exhibits several drawbacks mainly related to the instability and low efficacy of the exogenously administered therapeutic enzyme.

View Article and Find Full Text PDF

We report hybrid organosilica toroidal particles containing a short peptide sequence as the organic component of the hybrid systems. Once internalised in cancer cells, the presence of the peptide allows for interaction with peptidase enzymes, which attack the nanocarrier effectively triggering its structural breakdown. Moreover, these biodegradable nanovectors are characterised by high cellular uptake and exocytosis, showing great potential as biodegradable drug carriers.

View Article and Find Full Text PDF

Growth hormone releasing peptide, GHRP-6, a hexapeptide (His-(D-Trp)-Ala-Trp-(D-Phe)-Lys-NH2, MW = 872.44 Da) that belongs to a class of synthetic growth hormone secretagogues, can stimulate growth hormone secretion from somatotrophs in several species including humans. In the present study, we demonstrate that GHRP-6 dispersed in aqueous solution, at pH 7.

View Article and Find Full Text PDF

The integration of therapeutic biomolecules, such as proteins and peptides, in nanovesicles is a widely used strategy to improve their stability and efficacy. However, the translation of these promising nanotherapeutics to clinical tests is still challenged by the complexity involved in the preparation of functional nanovesicles and their reproducibility, scalability, and cost production. Here we introduce a simple one-step methodology based on the use of CO2-expanded solvents to prepare multifunctional nanovesicle-bioactive conjugates.

View Article and Find Full Text PDF

A confocal fluorescence microscopy-based assay was used for studying the influence of the preparation route on the supramolecular organization of lipids in a vesicular system. In this work, vesicles composed of cholesterol and CTAB (1/1 mol %) or cholesterol and DOPC (2/8 mol %) and incorporating two membrane dyes were prepared by either a compressed fluid (CF)-based method (DELOS-susp) or a conventional film hydration procedure. They were subsequently immobilized and imaged individually using a confocal fluorescence microscope.

View Article and Find Full Text PDF

Vesicular systems, especially liposomes, have generated a great deal of interest as intelligent materials for the delivery of bioactive molecules since they can be used as sensitive containers that respond to external stimuli, such as pressure, pH, temperature, or concentration changes in the medium, triggering modifications in their supramolecular structure. The control of the nanostructure-particle size and size distribution, membrane morphology, and supramolecular organization-of these self-assembled systems is of profound importance for their application in drug delivery and the discovery of new nanomedicines. This chapter will describe the chemical structure of vesicles and their pharmacological properties, conventional and new vesicle preparation methods and structural characterization, as well as their use in the rational design and fabrication of nanomedicines.

View Article and Find Full Text PDF