Background And Aim: In China, clinical experience with direct-acting antiviral treatments for hepatitis C virus (HCV) infection is still emerging. C-CORAL is a phase 3, multinational, placebo-controlled, double-blind trial of elbasvir/grazoprevir (EBR/GZR) in participants with HCV infection from the Asia-Pacific region and Russia. Here, we report the data from participants enrolled in China.
View Article and Find Full Text PDFAntimicrob Agents Chemother
September 2019
Hepatitis C virus (HCV) genotype (GT) 2 represents approximately 9% of all viral infections globally. While treatment outcomes for GT2-infected patients have improved substantially with direct-acting antiviral agents (DAAs) compared to interferon-α, the presence of polymorphisms in NS5A can impact efficacy of NS5A inhibitor-containing regimens. Thus, pathways of NS5A resistance were explored in GT2 subtypes using elbasvir, an NS5A inhibitor with broad genotype activity.
View Article and Find Full Text PDFBackground And Aim: Although treatment with direct-acting antivirals has dramatically improved morbidity and mortality attributable to chronic hepatitis C virus infection, universal access to these medicines has been slow in the Asia-Pacific region and Russia. This study evaluated efficacy and safety of elbasvir/grazoprevir in participants with hepatitis C virus infection from Asia-Pacific countries and Russia (C-CORAL).
Methods: C-CORAL was a phase 3, randomized, placebo-controlled study (NCT02251990).
Antimicrob Agents Chemother
November 2018
Inhibition of NS5A has emerged as an attractive strategy to intervene in hepatitis C virus (HCV) replication. Ruzasvir (formerly MK-8408) was developed as a novel NS5A inhibitor to improve upon the potency and barrier to resistance of early compounds. Ruzasvir inhibited HCV RNA replication with 50% effective concentrations (ECs) of 1 to 4 pM in Huh7 or Huh7.
View Article and Find Full Text PDFPurpose: A detailed analysis of hepatitis C virus (HCV) resistance-associated substitutions (RASs) is required to understand why people fail direct-acting antiviral therapies. This study was conducted to assess RASs in an analysis of 2 trials evaluating the second-generation NS3/4A protease inhibitor grazoprevir (GZR) in combination with peginterferon/ribavirin.
Patients And Methods: From a total of 113 participants with HCV genotype 1 infection, RASs were evaluated in 25 patients who relapsed and 6 patients with on-treatment virologic breakthrough using consensus Sanger and clonal sequence analysis of NS3/NS4a genes, with in vitro testing of replicon mutants.
Direct-acting antivirals (DAAs) targeting NS5A are broadly effective against hepatitis C virus (HCV) infections, but sustained virological response rates are generally lower in patients infected with genotype (gt)-1a than gt-1b viruses. The explanation for this remains uncertain. Here, we adopted a highly accurate, ultra-deep primer ID sequencing approach to intensively study serial changes in the NS5A-coding region of HCV in gt-1a- and gt-1b-infected subjects receiving a short course of monotherapy with the NS5A inhibitor, elbasvir.
View Article and Find Full Text PDFThe prevalence of hepatitis C virus (HCV) infection in Asian countries is high. This study assessed the efficacy and safety of elbasvir/grazoprevir (EBR/GZR) in participants with HCV infection from Asia-Pacific countries and Russia. In this phase 3, randomized, placebo-controlled, double-blind study, treatment-naive participants with HCV genotype (GT) 1, 4, or 6 infection were randomized to EBR 50 mg/GZR 100 mg (immediate-treatment group [ITG]) or placebo (deferred-treatment group [DTG]) once daily for 12 weeks (Protocol PN-5172-067, NCT02251990).
View Article and Find Full Text PDFWe describe the discovery of MK-6169, a potent and pan-genotype hepatitis C virus NS5A inhibitor with optimized activity against common resistance-associated substitutions. SAR studies around the combination of changes to both the valine and aminal carbon region of elbasvir led to the discovery of a series of compounds with substantially improved potency against common resistance-associated substitutions in the major genotypes, as well as good pharmacokinetics in both rat and dog. Through further optimization of key leads from this effort, MK-6169 (21) was discovered as a preclinical candidate for further development.
View Article and Find Full Text PDFAlthough genotype 4 (GT4)-infected patients represent a minor overall percentage of the global hepatitis C virus (HCV)-infected population, the high prevalence of the genotype in specific geographic regions coupled with substantial sequence diversity makes it an important genotype to study for antiviral drug discovery and development. We evaluated two direct-acting antiviral agents-grazoprevir, an HCV NS3/4A protease inhibitor, and elbasvir, an HCV NS5A inhibitor-in GT4 replicons prior to clinical studies in this genotype. Following a bioinformatics analysis of available GT4 sequences, a set of replicons bearing representative GT4 clinical isolates was generated.
View Article and Find Full Text PDFGrazoprevir is a potent pan-genotype and macrocyclic inhibitor of hepatitis C virus (HCV) NS3/4A protease and was developed for treating chronic HCV infection. In HCV genotype (GT) 1a, grazoprevir maintains potent activity against a majority of NS3 resistance-associated amino acid substitutions, including the highly prevalent and naturally occurring Q80K polymorphism that impacts simeprevir, another NS3/4A protease inhibitor. The basis for an unexpected difference in the clinical impact of some NS3 substitutions was investigated.
View Article and Find Full Text PDFWe describe the research that led to the discovery of compound 40 (ruzasvir, MK-8408), a pan-genotypic HCV nonstructural protein 5A (NS5A) inhibitor with a "flat" GT1 mutant profile. This NS5A inhibitor contains a unique tetracyclic indole core while maintaining the imidazole-proline-valine Moc motifs of our previous NS5A inhibitors. Compound 40 is currently in early clinical trials and is under evaluation as part of an all-oral DAA regimen for the treatment of chronic HCV infection.
View Article and Find Full Text PDFThe discovery of potent and pan-genotypic HCV NS5A inhibitors faces many challenges including the significant diversity among genotypes, substantial potency shift conferred on some key resistance-associated variants, inconsistent SARs between different genotypes and mutants, and the lacking of models of inhibitor/protein complexes for rational inhibitor design. As part of ongoing efforts on HCV NS5A inhibition at Merck, we now describe the discovery of a novel series of chromane containing NS5A inhibitors. SAR studies around the "Z" group of the tetracyclic indole scaffold explored fused bicyclic rings as alternates to the phenyl group of elbasvir (1, MK-8742) and identified novel chromane and 2,3-dihydrobenzofuran derivatives as "Z" group replacements offered good potency across all genotypes.
View Article and Find Full Text PDFWe describe the impact of proline modifications, in our tetracyclic-indole based series of nonstructural protein 5A (NS5A) inhibitors, to their replicon profiles. This work identified NS5A inhibitors with an improved and flattened resistance profiles.
View Article and Find Full Text PDFBioorg Med Chem Lett
October 2016
Herein, we describe our research efforts to develop unique cores in molecules which function as HCV nonstructural protein 5A (NS5A) inhibitors. In particular, various fused tetracyclic cores were identified which showed genotype and mutant activities comparable to the indole-based tetracyclic core.
View Article and Find Full Text PDFBioorg Med Chem Lett
October 2016
As part of an ongoing effort in NS5A inhibition at Merck we now describe our efforts for introducing substitution around the tetracyclic indole core of MK-8742. Fluoro substitution on the core combined with the fluoro substitutions on the proline ring improved the potency against GT1a Y93H significantly. However, no improvement on GT2b potency was achieved.
View Article and Find Full Text PDFHerein we describe our research efforts around the aryl and heteroaryl substitutions at the aminal carbon of the tetracyclic indole-based HCV NS5A inhibitor MK-8742. A series of potent NS5A inhibitors are described, such as compounds 45-47, 54, 56, and 65, which showed improved potency against clinically relevant and resistance associated HCV variants. The improved potency profiles of these compounds demonstrated an SAR that can improve the potency against GT2b, GT1a Y93H, and GT1a L31V altogether, which was unprecedented in our previous efforts in NS5A inhibition.
View Article and Find Full Text PDFHCV NS5A inhibitors have demonstrated impressive in vitro virologic profiles in HCV replicon assays and robust HCV RNA titer reduction in the clinic making them attractive components for inclusion in an all oral fixed-dose combination (FDC) regimen for the treatment of HCV infection. Merck's effort in this area identified MK-4882 and MK-8325 as early development leads. Herein, we describe the discovery of potent macrocyclic NS5A inhibitors bearing the MK-8325 or MK-4882 core structure.
View Article and Find Full Text PDFBioorg Med Chem Lett
August 2016
HCV NS5A inhibitors have demonstrated impressive in vitro potency profiles in HCV replicon assays and robust HCV RNA titer reduction in the clinic making them attractive components for inclusion in an all oral fixed dose combination regimen for the treatment of HCV infection. Herein we describe our continued research efforts around the alkyl "Z group" modification of the tetracyclic indole-based NS5A inhibitor MK-8742, which led to the discovery of a series of potent NS5A inhibitors. Compounds 10 and 19 are of particular interests since they are as potent as our previous leads and have much improved rat pharmacokinetic profiles.
View Article and Find Full Text PDFHCV NS5A inhibitors have demonstrated impressive in vitro potency profiles in HCV replicon assays and robust HCV RNA titer reduction in the clinic making them attractive components for inclusion in an all oral fixed dose combination regimen for the treatment of HCV infection. Herein, we describe research efforts that led to the discovery of a series of fused tricyclic core containing HCV NS5A inhibitors such as 24, 39, 40, 43, and 44 which have pan-genotype activity and are orally bioavailable in the rat.
View Article and Find Full Text PDFThe selection of resistance-associated variants (RAVs) against single agents administered to patients chronically infected with hepatitis C virus (HCV) necessitates that direct-acting antiviral agents (DAAs) targeting multiple viral proteins be developed to overcome failure resulting from emergence of resistance. The combination of grazoprevir (formerly MK-5172), an NS3/4A protease inhibitor, and elbasvir (formerly MK-8742), an NS5A inhibitor, was therefore studied in genotype 1a (GT1a) replicon cells. Both compounds were independently highly potent in GT1a wild-type replicon cells, with 90% effective concentration (EC90) values of 0.
View Article and Find Full Text PDFHCV NS5A inhibitors have shown impressive in vitro potency profiles in HCV replicon assays thus making them attractive components for inclusion in an all oral fixed dose combination treatment regimen. Herein we describe the research efforts that led to the discovery of silyl proline containing HCV NS5A inhibitors such as 7e and 8a with pan-genotype activity profile and acceptable pharmacokinetic properties.
View Article and Find Full Text PDFA novel series of 2-(4-sulfonamidophenyl)-indole 3-carboxamides was identified and optimized for activity against the HCV genotype 1b replicon resulting in compounds with potent and selective activity. Further evaluation of this series demonstrated potent activity across HCV genotypes 1a, 2a and 3a. Compound 4z had reduced activity against HCV genotype 1b replicons containing single mutations in the NS4B coding sequence (F98C and V105M) indicating that NS4B is the target.
View Article and Find Full Text PDFAntimicrob Agents Chemother
November 2015
Elbasvir is an investigational NS5A inhibitor with in vitro activity against multiple HCV genotypes. Antiviral activity of elbasvir was measured in replicons derived from wild-type or resistant variants of genotypes 1a, 1b, and 3. The barrier to resistance was assessed by the number of resistant colonies selected by exposure to various elbasvir concentrations.
View Article and Find Full Text PDF