Publications by authors named "Ingo Willhardt"

Objectives: Intracellular phospholipases A₂ (inPLA₂) are activated during monoaminergic neurotranismision and act as key enzymes in cell membrane repair and remodelling, neuroplasticity, neurodevelopment, apoptosis, synaptic pruning, neurodegenerative processes and neuroinflammation. Several independent studies found increased inPLA₂ activity in drug-naïve first episode and chronic schizophrenia. This study investigates if inPLA₂ activity is associated with symptoms severity and treatment response in first episode schizophrenia (FES).

View Article and Find Full Text PDF

Regional structural brain changes are among the most robust biological findings in schizophrenia, yet the underlying pathophysiological changes remain poorly understood. Recent evidence suggests that abnormal neuronal/dendritic plasticity is related to alterations in membrane lipids. We examined whether serum activity of membrane lipid remodelling/repairing cytosolic phospholipase A(2) (PLA(2)) were related to regional brain structure in magnetic resonance images (MRI).

View Article and Find Full Text PDF

Phospholipase A2 (PLA2) is involved in important aspects of dementia, for example neurotransmission and memory processing, membrane function, choline availability, and antioxidative defense. Reduced PLA2-activity has been reported so far in blood samples and postmortem neuronal tissue in Alzheimer disease. For the first time, we studied PLA2 in cerebrospinal fluid (CSF) in Alzheimer disease (AD), vascular (VD), and mixed Alzheimer/vascular dementia (MD).

View Article and Find Full Text PDF

Background: Increased activity of calcium independent phospholipase A2 (iPLA2) has repeatedly been found in the serum of unmedicated first-episode schizophrenia patients and assumed to reflect a pertubation of phospholipid metabolism. Previous studies in chronic schizophrenia were less conclusive. To explore whether iPLA2 changes are stage dependent, we investigated serum iPLA2 activity in various stages of schizophrenia.

View Article and Find Full Text PDF

The rationale of this study was to understand the complexity of kinetics of fluorogenic phospholipid substrates as well as contradictory findings of clinical papers measuring phospholipase A2 (PLA2) activity using different methodologies. The aim was to recommend to clinicians and researchers what substrate in conjunction with what assay should be used. Two methods, (i) continuous fluorometric assay and (ii) high performance thin layer chromatography (HPTLC) on microplates combined with quantitative image scanning, were studied with three different substrates (bis-BODIPY FL C11-PC, NBDC6-HPC, PED6).

View Article and Find Full Text PDF