Publications by authors named "Ingo Wald"

Interactively visualizing large finite element simulation data on High-Performance Computing (HPC) systems poses several difficulties. Some of these relate to unstructured data, which, even on a single node, is much more expensive to render compared to structured volume data. Worse yet, in the data parallel rendering context, such data with highly non-convex spatial domain boundaries will cause rays along its silhouette to enter and leave a given rank's domains at different distances.

View Article and Find Full Text PDF

We propose a simple yet effective method for clustering finite elements to improve preprocessing times and rendering performance of unstructured volumetric grids without requiring auxiliary connectivity data. Rather than building bounding volume hierarchies (BVHs) over individual elements, we sort elements along with a Hilbert curve and aggregate neighboring elements together, improving BVH memory consumption by over an order of magnitude. Then to further reduce memory consumption, we cluster the mesh on the fly into sub-meshes with smaller indices using a series of efficient parallel mesh re-indexing operations.

View Article and Find Full Text PDF

In theory, efficient and high-quality rendering of unstructured data should greatly benefit from modern GPUs, but in practice, GPUs are often limited by the large amount of memory that large meshes require for element representation and for sample reconstruction acceleration structures. We describe a memory-optimized encoding for large unstructured meshes that efficiently encodes both the unstructured mesh and corresponding sample reconstruction acceleration structure, while still allowing for fast random-access sampling as required for rendering. We demonstrate that for large data our encoding allows for rendering even the 2.

View Article and Find Full Text PDF

We present a technique that leverages ray tracing hardware available in recent Nvidia RTX GPUs to solve a problem other than classical ray tracing. Specifically, we demonstrate how to use these units to accelerate the point location of general unstructured elements consisting of both planar and bilinear faces. This unstructured mesh point location problem has previously been challenging to accelerate on GPU architectures; yet, the performance of these queries is crucial to many unstructured volume rendering and compute applications.

View Article and Find Full Text PDF

Structured Adaptive Mesh Refinement (Structured AMR) enables simulations to adapt the domain resolution to save computation and storage, and has become one of the dominant data representations used by scientific simulations; however, efficiently rendering such data remains a challenge. We present an efficient approach for volume- and iso-surface ray tracing of Structured AMR data on GPU-equipped workstations, using a combination of two different data structures. Together, these data structures allow a ray tracing based renderer to quickly determine which segments along the ray need to be integrated and at what frequency, while also providing quick access to all data values required for a smooth sample reconstruction kernel.

View Article and Find Full Text PDF

We present a general high-performance technique for ray tracing generalized tube primitives. Our technique efficiently supports tube primitives with fixed and varying radii, general acyclic graph structures with bifurcations, and correct transparency with interior surface removal. Such tube primitives are widely used in scientific visualization to represent diffusion tensor imaging tractographies, neuron morphologies, and scalar or vector fields of 3D flow.

View Article and Find Full Text PDF

Adaptive mesh refinement (AMR) is a key technology for large-scale simulations that allows for adaptively changing the simulation mesh resolution, resulting in significant computational and storage savings. However, visualizing such AMR data poses a significant challenge due to the difficulties introduced by the hierarchical representation when reconstructing continuous field values. In this paper, we detail a comprehensive solution for interactive isosurface rendering of block-structured AMR data.

View Article and Find Full Text PDF

Wide-SIMD hardware is power and area efficient, but it is challenging to efficiently map ray tracing algorithms to such hardware especially when the rays are incoherent. The two most commonly used schemes are either packet tracing, or relying on a separate traversal stack for each SIMD lane. Both work great for coherent rays, but suffer when rays are incoherent: The former experiences a dramatic loss of SIMD utilization once rays diverge; the latter requires a large local storage, and generates multiple incoherent streams of memory accesses that present challenges for the memory system.

View Article and Find Full Text PDF

Unlike rasterization, which draws and shades triangles individually, ray tracing simulates propagation of light between surfaces in a scene and enables advanced effects such as transparency, shadows, and ambient occlusion--effects not easily accomplished in other massive-model rendering approaches. This article describes the application of ray tracing to several aircraft manufacturing scenarios.

View Article and Find Full Text PDF

We describe a system for interactively rendering isosurfaces of tetrahedral finite-element scalar fields using coherent ray tracing techniques on the CPU. By employing state-of-the art methods in polygonal ray tracing, namely aggressive packet/frustum traversal of a bounding volume hierarchy, we can accomodate large and time-varying unstructured data. In conjunction with this efficiency structure, we introduce a novel technique for intersecting ray packets with tetrahedral primitives.

View Article and Find Full Text PDF

We present an approach to visualizing particle-based simulation data using interactive ray tracing and describe an algorithmic enhancement that exploits the properties of these data sets to provide highly interactive performance and reduced storage requirements. This algorithm for fast packet-based ray tracing of multilevel grids enables the interactive visualization of large time-varying data sets with millions of particles and incorporates advanced features like soft shadows. We compare the performance of our approach with two recent particle visualization systems: one based on an optimized single ray grid traversal algorithm and the other on programmable graphics hardware.

View Article and Find Full Text PDF

The visualization of high-quality isosurfaces at interactive rates is an important tool in many simulation and visualization applications. Today, isosurfaces are most often visualized by extracting a polygonal approximation that is then rendered via graphics hardware or by using a special variant of preintegrated volume rendering. However, these approaches have a number of limitations in terms of the quality of the isosurface, lack of performance for complex data sets, or supported shading models.

View Article and Find Full Text PDF