Traffic safety essentially depends on the drivers' alertness and vigilance, especially in monotonous or demanding driving situations. Brain oscillatory EEG activity offers insight into a drivers' mental state and has therefore attracted much attention in the past. However, EEG measures do not only vary with internal factors like attentional engagement and vigilance but might also interact with external factors like time on task, task demands, or the degree to which a traffic situation is predictable.
View Article and Find Full Text PDFMotor imagery (MI) combined with real-time electroencephalogram (EEG) feedback is a popular approach for steering brain-computer interfaces (BCI). MI BCI has been considered promising as add-on therapy to support motor recovery after stroke. Yet whether EEG neurofeedback indeed targets specific sensorimotor activation patterns cannot be unambiguously inferred from EEG alone.
View Article and Find Full Text PDFLonger lasting performance in cognitively demanding tasks leads to an exhaustion of cognitive resources and to a state commonly described as mental fatigue. More specifically, the allocation and focusing of attention become less efficient with time on task. Additionally, the selection of even simple responses becomes more error prone.
View Article and Find Full Text PDFWe investigated cortical responses and valence/arousal ratings of spider phobic, snake phobic, and healthy subjects while they were processing feared, fear-relevant, emotional neutral, and pleasant stimuli. Results revealed significantly larger amplitudes of late ERP components (P3 and late positive complex, LPC) but not of early components (N1, P2, N2) in phobics when subjects were processing feared stimuli. This fear-associated increase of amplitudes of late ERP components in phobic subjects was maximal at centro-parietal and occipital brain sites.
View Article and Find Full Text PDFUsing event-related functional magnetic resonance imaging we investigated blood oxygen level dependent brain activation in spider phobic and non-phobic subjects while exposed to phobia-related pictures (spiders) and non-phobia-related pictures (snakes and mushrooms). In contrast to previous studies, we show significantly increased amygdala activation in spider phobics, but not in controls, during presentation of phobia-relevant visual stimuli. Furthermore, phobia-specific increased activation was also found in the insula, the orbitofrontal cortex and the uncus.
View Article and Find Full Text PDF