Publications by authors named "Ingke Rachor"

In order to assess the temporal variability of the conditions for the microbial oxidation of methane in landfill cover soils and their driving variables, gas composition at non-emissive and strongly emissive locations (hotspots) was monitored on a seasonal, daily and hourly time scale on an old, unlined landfill in northern Germany. Our study showed that the impact of the various environmental factors varied with the mode of gas transport and with the time scale considered. At non-emissive sites, governed by diffusive gas transport, soil gas composition was subject to a pronounced seasonal variation.

View Article and Find Full Text PDF

The microbial oxidation of methane in engineered cover soils is considered a potent option for the mitigation of emissions from old landfills or sites containing wastes of low methane generation rates. A laboratory column study was conducted in order to derive design criteria that enable construction of an effective methane oxidising cover from the range of soils that are available to the landfill operator. Therefore, the methane oxidation capacity of different soils was assessed under simulated landfill conditions.

View Article and Find Full Text PDF

In order to optimise methane oxidation in landfill cover soils, it is important to be able to accurately quantify the amount of methane oxidised. This research considers the gas push-pull test (GPPT) as a possible method to quantify oxidation rates in situ. During a GPPT, a gas mixture consisting of one or more reactive gases (e.

View Article and Find Full Text PDF