Psoriasis is an inflammatory skin disorder characterized by the hyperproliferation of basal epidermal cells. It is regarded as T-cell mediated, but the role of keratinocytes (KCs) in the disease pathogenesis has reemerged, with genetic studies identifying KC-associated genes. We applied flow cytometry on KCs from lesional and nonlesional epidermis to characterize the phenotype in the germinative compartment in psoriasis, and we observed an overall increase in the stemness markers CD29 (2.
View Article and Find Full Text PDFWe used linker histone-depleted normal human fibroblast nuclei as templates to study how phosphorylation affects histone H5 binding to chromatin in situ. Permeabilized cells were treated with 0.7 M NaCl to extract the native linker histones.
View Article and Find Full Text PDFBackground: Histone H1 is an important constituent of chromatin, and is involved in regulation of its structure. During the cell cycle, chromatin becomes locally decondensed in S phase, highly condensed during metaphase, and again decondensed before re-entry into G1. This has been connected to increasing phosphorylation of H1 histones through the cell cycle.
View Article and Find Full Text PDFHistone H1 is an important constituent of chromatin, which undergoes major structural rearrangements during mitosis. However, the role of H1, multiple H1 subtypes, and H1 phosphorylation is still unclear. In normal human fibroblasts, phosphorylated H1 was found located in nuclei during prophase and in both cytoplasm and condensed chromosomes during metaphase, anaphase, and telophase as detected by immunocytochemistry.
View Article and Find Full Text PDFHistone H1 is a family of nucleosomal proteins that exist in a number of subtypes. These subtypes can be modified after translation in various ways, above all by phosphorylation. Increasing levels of H1 phosphorylation has been correlated with cell cycle progression, while both phosphorylation and dephosphorylation of histone H1 have been linked to the apoptotic process.
View Article and Find Full Text PDFRecent studies, using cytometric techniques based on fluorescence microscopy, have provided new information on how linker histones interact with chromatin in vivo or in situ. In particular, the use of green fluorescent proteins (GFPs) has enabled detailed studies of how individual H1 subtypes, and specific motifs in them, interact with chromatin in vivo. Furthermore, the development of cytochemical methods to study the interaction between linker histones and chromatin using DNA-binding fluorochromes as indirect probes for linker histone affinity in situ, in combination with highly sensitive and specific analytical methods, has provided additional information on the interactions between linker histones and chromatin in several cell systems.
View Article and Find Full Text PDFHistone H1(0) is a linker histone subvariant present in tissues of low proliferation rate. It is supposed to participate in the expression and maintenance of the terminal differentiation phenotype. The aim of this work was to study histone H1(0) distribution in human breast carcinoma and its relationship with the processes of proliferation and differentiation.
View Article and Find Full Text PDFIn humans, eight types of histone H1 exist (H1.1-H1.5, H1 degrees , H1t and H1oo), all consisting of a highly conserved globular domain and less conserved N- and C-terminal tails.
View Article and Find Full Text PDFBackground: Linker histones constitute a family of lysine-rich proteins associated with nucleosome core particles and linker DNA in eukaryotic chromatin. In permeabilized cells, they can be extracted from nuclei by using salt concentration in the range of 0.3 to 0.
View Article and Find Full Text PDFThe replacement linker histones H1(0) and H5 are present in frog and chicken erythrocytes, respectively, and their accumulation coincides with cessation of proliferation and compaction of chromatin. These cells have been analyzed for the affinity of linker histones for chromatin with cytochemical and biochemical methods. Our results show a stronger association between linker histones and chromatin in chicken erythrocyte nuclei than in frog erythrocyte nuclei.
View Article and Find Full Text PDFMethylation of the N-terminal region of histones was first described more than 35 years ago, but its biological significance has remained unclear. Proposed functions range from transcriptional regulation to the higher order packing of chromatin in progress of mitotic condensation. Primarily because of the recent discovery of the SET domain-depending H3-specific histone methyltransferases SUV39H1 and Suv39h1, which selectively methylate lysine 9 of the H3 N terminus, this posttranslational modification has regained scientific interest.
View Article and Find Full Text PDF