Publications by authors named "Ingeborg Van der Made"

Article Synopsis
  • * In experiments with mice, SGLT2 knockout mice showed only mild heart dysfunction, while EMPA significantly improved heart function and reduced fibrosis, edema, and oxidative stress in both normal and SGLT2 knockout mice.
  • * The study suggests that EMPA's protective effects come from its interaction with the sodium hydrogen exchanger 1 (NHE1) and nitric oxide (NO) pathways rather than through SGLT2 inhibition, highlighting the importance of targeting NHE1 for heart failure treatment. *
View Article and Find Full Text PDF

Background: Patients with excess epicardial adipose tissue (EAT) are at increased risk of developing cardiac arrhythmias. EAT promotes arrhythmias by depolarizing the resting membrane of cardiomyocytes, which slows down conduction and facilitates re-entrant arrhythmias. We hypothesized that EAT slows conduction by secreting extracellular vesicles (EVs) and their microRNA (miRNA) cargo.

View Article and Find Full Text PDF

We aim to elucidate how miRNAs regulate the mRNA signature of atrial fibrillation (AF), to gain mechanistic insight and identify candidate targets for future therapies. We present combined miRNA-mRNA sequencing using atrial tissues of patient without AF (n = 22), with paroxysmal AF (n = 22) and with persistent AF (n = 20). mRNA sequencing previously uncovered upregulated epithelial to mesenchymal transition, endothelial cell proliferation and extracellular matrix remodelling involving glycoproteins and proteoglycans in AF.

View Article and Find Full Text PDF

Circular RNAs (circRNAs) are a class of non-coding RNA molecules that are gaining increasing attention for their roles in various pathophysiological processes. The RNA-binding protein quaking (QKI) has been identified as a regulator of circRNA formation. In this study, we investigate the role of QKI in the formation of circRNAs in the heart by performing RNA-sequencing on Qki-knockout mice.

View Article and Find Full Text PDF

Aims: In the heart, splicing factors orchestrate the functional properties of cardiomyocytes by regulating the alternative splicing of multiple genes. Work in embryonic stem cells has shown that the splicing factor Quaking (QKI) regulates alternative splicing during cardiomyocyte differentiation. However, the relevance and function of QKI in adult cardiomyocytes remains unknown.

View Article and Find Full Text PDF

Long-QT syndrome type 1 (LQT1) is caused by mutations in . Patients heterozygous for such a mutation co-assemble both mutant and wild-type -encoded subunits into tetrameric Kv7.1 potassium channels.

View Article and Find Full Text PDF

Eukaryotic genomes contain a tiny subset of 'minor class' introns with unique sequence elements that require their own splicing machinery. These minor introns are present in certain gene families with specific functions, such as voltage-gated Na+ and voltage-gated Ca2+ channels. Removal of minor introns by the minor spliceosome has been proposed as a post-transcriptional regulatory layer, which remains unexplored in the heart.

View Article and Find Full Text PDF

Patients with a disorder of mitochondrial long-chain fatty acid β-oxidation (FAO) have reduced fasting tolerance and may present with hypoketotic hypoglycemia, hepatomegaly, (cardio)myopathy and rhabdomyolysis. Patients should avoid a catabolic state because it increases reliance on FAO as energy source. It is currently unclear whether weight loss through a reduction of caloric intake is safe in patients with a FAO disorder.

View Article and Find Full Text PDF

Background: TTN (Titin), the largest protein in humans, forms the molecular spring that spans half of the sarcomere to provide passive elasticity to the cardiomyocyte. Mutations that disrupt the transcript are the most frequent cause of hereditary heart failure. We showed before that produces a class of circular RNAs (circRNAs) that depend on RBM20 to be formed.

View Article and Find Full Text PDF

Background Because of a nonresponse to aspirin (aspirin resistance), patients with acute coronary syndrome (ACS) are at increased risk of developing recurrent event. The in vitro platelet function tests have potential limitations, making them unsuitable for the detection of aspirin resistance. We investigated whether miR-19b-1-5p could be utilized as a biomarker for aspirin resistance and future major adverse cardio-cerebrovascular (MACCE) events in patients with ACS.

View Article and Find Full Text PDF
Article Synopsis
  • ANP and BNP are crucial proteins linked to heart disease, regulated by a specific enhancer cluster that influences their expression under stress conditions.
  • The study aimed to understand how this enhancer cluster operates at the genomic level, using methods like CRISPR to analyze its impact on gene regulation in mice.
  • Findings revealed that the enhancer cluster is essential for the proper expression of ANP and BNP, and its absence leads to enlarged hearts, indicating a competitive regulation mechanism between these two genes.
View Article and Find Full Text PDF

Aims: SCN5A mutations are associated with arrhythmia syndromes, including Brugada syndrome, long QT syndrome type 3 (LQT3), and cardiac conduction disease. Long QT syndrome type 3 patients display atrio-ventricular (AV) conduction slowing which may contribute to arrhythmogenesis. We here investigated the as yet unknown underlying mechanisms.

View Article and Find Full Text PDF

Myocardin (MYOCD) is the founding member of a class of transcriptional coactivators that bind the serum-response factor to activate gene expression programs critical in smooth muscle (SM) and cardiac muscle development. Insights into the molecular functions of MYOCD have been obtained from cell culture studies, and to date, knowledge about in vivo roles of MYOCD comes exclusively from experimental animals. Here, we defined an often lethal congenital human disease associated with inheritance of pathogenic MYOCD variants.

View Article and Find Full Text PDF

Background: Surviving cells in the postinfarction border zone are subjected to intense fluctuations of their microenvironment. Recently, border zone cardiomyocytes have been specifically implicated in cardiac regeneration. Here, we defined their unique transcriptional and regulatory properties, and comprehensively validated new molecular markers, including Nppb, encoding B-type natriuretic peptide, after infarction.

View Article and Find Full Text PDF

Marfan syndrome (MFS) is a connective tissue disorder caused by mutations in the fibrillin-1 gene (FBN1), resulting in aortic aneurysm formation and dissections. Interestingly, variable aortopathy is observed even within MFS families with the same mutation. Thus, additional risk factors determine disease severity.

View Article and Find Full Text PDF

The RNA-binding protein Rbm24 has recently been identified as a pivotal splicing factor in the developing heart. Loss of Rbm24 in mice disrupts cardiac development by governing a large number of muscle-specific splicing events. Since Rbm24 knockout mice are embryonically lethal, the role of Rbm24 in the adult heart remained unexplored.

View Article and Find Full Text PDF

Aims: Management of patients with inherited cardiac ion channelopathy is hindered by variability in disease severity and sudden cardiac death (SCD) risk. Here, we investigated the modulatory role of hypertrophy on arrhythmia and SCD risk in sodium channelopathy.

Methods And Results: Follow-up data was collected from 164 individuals positive for the SCN5A-1795insD founder mutation and 247 mutation-negative relatives.

View Article and Find Full Text PDF

Background: Mutations in RBM20 (RNA-binding motif protein 20) cause a clinically aggressive form of dilated cardiomyopathy, with an increased risk of malignant ventricular arrhythmias. RBM20 is a splicing factor that targets multiple pivotal cardiac genes, such as Titin (TTN) and CAMK2D (calcium/calmodulin-dependent kinase II delta). Aberrant TTN splicing is thought to be the main determinant of RBM20-induced dilated cardiomyopathy, but is not likely to explain the increased risk of arrhythmias.

View Article and Find Full Text PDF

Aims: The pathology of heart failure is characterized by poorly contracting and dilated ventricles. At the cellular level, this is associated with lengthening of individual cardiomyocytes and loss of sarcomeres. While it is known that the transcription factor myocyte enhancer factor-2 (MEF2) is involved in this cardiomyocyte remodelling, the underlying mechanism remains to be elucidated.

View Article and Find Full Text PDF

Circular RNAs (circRNAs) are a relatively new class of RNA molecules, and knowledge about their biogenesis and function is still in its infancy. It was recently shown that alternative splicing underlies the formation of circular RNAs (circRNA) arising from the Titin gene. Since the main mechanism by which circRNAs are formed is still unclear, we hypothesized that alternative splicing, and in particular exon skipping, is a major driver of circRNA production.

View Article and Find Full Text PDF

Aims: The Z-disc is a crucial structure of the sarcomere and is implicated in mechanosensation/transduction. Dysregulation of Z-disc proteins often result in cardiomyopathy. We have previously shown that the Z-disc protein Cytoskeletal Heart-enriched Actin-associated Protein (CHAP) is essential for cardiac and skeletal muscle development.

View Article and Find Full Text PDF

The importance of tightly controlled alternative pre-mRNA splicing in the heart is emerging. The RNA binding protein Rbm24 has recently been identified as a pivotal cardiac splice factor, which governs sarcomerogenesis in the heart by controlling the expression of alternative protein isoforms. Rbm38, a homolog of Rbm24, has also been implicated in RNA processes such as RNA splicing, RNA stability and RNA translation, but its function in the heart is currently unknown.

View Article and Find Full Text PDF

Marfan syndrome (MFS) is a connective tissue disorder in which aortic rupture is the major cause of death. MFS patients with an aortic diameter below the advised limit for prophylactic surgery (<5 cm) may unexpectedly experience an aortic dissection or rupture, despite yearly monitoring. Hence, there is a clear need for improved prognostic markers to predict such aortic events.

View Article and Find Full Text PDF

Background And Aims: The risk of developing cardiovascular disease (CVD) is twice as high among smoking individuals compared to non-smokers. Monocytes are involved in smoking-related atherosclerotic plaque formation. In this study, we investigated whether smokers with an increased risk of developing CVD can be identified on the basis of monocyte-derived miRNA expression levels.

View Article and Find Full Text PDF

Rationale: RNA-binding motif protein 20 (RBM20) is essential for normal splicing of many cardiac genes, and loss of RBM20 causes dilated cardiomyopathy. Given its role in splicing, we hypothesized an important role for RBM20 in forming circular RNAs (circRNAs), a novel class of noncoding RNA molecules.

Objective: To establish the role of RBM20 in the formation of circRNAs in the heart.

View Article and Find Full Text PDF