Publications by authors named "Ingeborg Hanbauer"

Reelin is an extracellular matrix protein synthesized in cerebellar granule cells that plays an important role in Purkinje cell positioning during cerebellar development and in modulating adult synaptic function. In the cerebellum of schizophrenia (SZ) and bipolar (BP) disorder patients, there is a marked decrease ( approximately 50%) of reelin expression. In this study we measured Purkinje neuron density in the Purkinje cell layer of cerebella of 13 SZ and 17 BP disorder patients from the McLean 66 Cohort Collection, Harvard Brain Tissue Resource Center.

View Article and Find Full Text PDF

Feeding mice, over 3 generations, an equicaloric diet in which alpha-linolenic acid, the dietary precursor of n-3 polyunsaturated fatty acids, was substituted by linoleic acid, the dietary precursor of n-6 polyunsaturated fatty acids, significantly increased body weight throughout life when compared with standard diet-fed mice. Adipogenesis observed in the low n-3 fatty acid mice was accompanied by a 6-fold upregulation of stearyl-coenzyme A desaturase 1 (Scd1), whose activity is correlated to plasma triglyceride levels. In total liver lipid and phospholipid extracts, the sum of n-3 fatty acids and the individual longer carbon chain acids, eicosapentaenoic acid (20:5n3), docosapentaenoic acid (22:5n3), and docosahexaenoic acid (22:6n3) were significantly decreased whereas arachidonic acid (20:4n6) was significantly increased.

View Article and Find Full Text PDF

Previously we have shown that the binding complex formation of methionine sulfoxide reductase A (msrA) promoter and calcium phospholipid binding protein (CPBP) enhances msrA transcription and expression. The msrA promoter-CPBP-binding complex (PmsrA-CPBP) formation was similar in Deltatrx1, Deltatrx2, and Deltatrx3 yeast strains and their control, with or without exposure to H(2)O(2). In Deltatrx1/Deltatrx2 double mutant the PmsrA-CPBP was similar to its parent strain, following exposure to H(2)O(2) for 30 min.

View Article and Find Full Text PDF

Methionine sulfoxide reductase A (MsrA) maintains the function of many proteins by reversing oxidation of methionine residues. Lack of this repair mechanism very likely increases aging-related disease susceptibility. In Saccharomyces cerevisiae, disruption of the msrA gene increases free and protein-bound methionine sulfoxide and decreases cell viability.

View Article and Find Full Text PDF