Osteochondral defects are deep joint surface lesions that affect the articular cartilage and the underlying subchondral bone. In the current study, a tissue engineering approach encompassing individual cells encapsulated in a biocompatible hydrogel is explored and . Cell-laden hydrogels containing either human periosteum-derived progenitor cells (PDCs) or human induced pluripotent stem cell (iPSC)-derived chondrocytes encapsulated in gelatin methacryloyl (GelMA) were evaluated for their potential to regenerate the subchondral mineralized bone and the articular cartilage on the joint surface, respectively.
View Article and Find Full Text PDFAutomated technologies are attractive for enhancing the robust manufacturing of tissue-engineered products for clinical translation. In this work, we present an automation strategy using a robotics platform for media changes, and imaging of cartilaginous microtissues cultured in static microwell platforms. We use an automated image analysis pipeline to extract microtissue displacements and morphological features as noninvasive quality attributes.
View Article and Find Full Text PDFArticular cartilage defects have limited healing potential and, when left untreated, can lead to osteoarthritis. Tissue engineering focuses on regenerating the damaged joint surface, preferably in an early stage. Here, we investigate the regenerative potential of three-dimensional (3D) constructs consisting of human induced pluripotent stem cell (iPSC)-derived chondrocytes in gelatin methacryloyl (GelMA) hydrogel for stable hyaline cartilage production.
View Article and Find Full Text PDFBackground: Bones have a remarkable capacity to heal upon fracture. Yet, in large defects or compromised conditions healing processes become impaired, resulting in delayed or non-union. Current therapeutic approaches often utilize autologous or allogeneic bone grafts for bone augmentation.
View Article and Find Full Text PDFIntroduction: The repair of deep osteochondral joint surface defects represents a significant unmet clinical need. Importantly, untreated lesions lead to a high rate of osteoarthritis. The current strategies to repair these defects include osteochondral autograft transplantation or "sandwich" strategies combining bone autografts with autologous chondrocyte implantation, with poorly documented long-term outcomes.
View Article and Find Full Text PDF