Publications by authors named "Inge N Bojesen"

The uptake of arachidonoyl ethanolamide (anandamide, AEA) in rat basophilic leukemia cells (RBL-2H3) has been proposed to occur via a saturable transporter that is blocked by specific inhibitors. Measuring uptake at 25 s, when fatty acid amide hydrolase (FAAH) does not appreciably affect uptake, AEA accumulated via a nonsaturable mechanism at 37 degrees C. Interestingly, saturation was observed when uptake was plotted using unbound AEA at 37 degrees C.

View Article and Find Full Text PDF

To study the effect of an unstirred layer (UL), we have investigated the exchange efflux kinetics of anandamide at 0 degrees C, pH 7.3, from albumin-free as well as from albumin-filled human red blood cell ghosts to media of various BSA concentrations ([BSA](o)). The rate constant (k(m)) of unidirectional flux from the outer membrane leaflet to BSA in the medium increased with the square root of [BSA](o) in accordance with the existence of a UL, which is a water layer adjacent to the membrane that is not subject to the same gross mixing that takes place in the rest of the medium.

View Article and Find Full Text PDF

The use of resealed red blood cell membranes (ghosts) allows the study of the transport of a compound in a nonmetabolizing system with a biological membrane. Transmembrane movements of anandamide (N-arachidonoylethanolamine, arachidonoylethanolamide) have been studied by exchange efflux experiments at 0 degrees C and pH 7.3 with albumin-free and albumin-filled human red blood cell ghosts.

View Article and Find Full Text PDF

Due to their hydrophobic nature, lipophilic compounds are always bound to proteins when transported in the organism. The transfer of such compounds between their binding proteins and cells as well as intracellular trafficking is mediated by a very low water-phase concentration of monomers. The use of protein filled resealed red cell membranes (erythrocyte ghosts) as semipermeable bags enables us to determine directly such water-phase concentrations in a biological system where the lipophilic compound is in equilibrium with the compound bound to its binding protein.

View Article and Find Full Text PDF

The endocannabinoid anandamide is of lipid nature and may thus bind to albumin in the vascular system, as do fatty acids. The knowledge of the free water-phase concentration of anandamide is essential for the investigations of its transfer from the binding protein to cellular membranes, because a water-phase shuttle of monomers mediates such transfers. We have used our method based upon the use of albumin-filled red cell ghosts as a dispersed biological "reference binder" to measure the water-phase concentrations of anandamide.

View Article and Find Full Text PDF