poisonings account for the majority of fatal mushroom poisonings. Recently, we identified hematotoxicity as a relevant aspect of poisonings. In this study, we investigated the effects of the main toxins of , α- and β-amanitin, on hematopoietic cell viability in vitro.
View Article and Find Full Text PDFThe biocide tetrakis(hydroxymethyl)phosphonium sulphate (THPS) and other members of the tetrakis(hydroxymethyl) phosphonium salts (THPX) family are associated with liver toxicity in several mammalian species and teratogenicity in rabbits. Malformations include skeletal changes and abnormalities in eye development and are very similar to those seen with vitamin A deficiency or excess. For this reason, it was hypothesized that teratogenicity of THPS(X) might be attributed to disturbances in retinol availability and/or metabolism as a result of maternal toxicity, for example, either due to insufficient dietary intake by the mothers or due to liver toxicity.
View Article and Find Full Text PDFP-glycoprotein (ABCB1), an ATP-binding cassette efflux transporter, limits intestinal absorption of its substrates and is a common site of drug-drug interactions. Drug-mediated induction of intestinal ABCB1 is a clinically relevant phenomenon associated with significantly decreased drug bioavailability. Currently, there are no well-established human models for evaluating its induction, so drug regulatory authorities provide no recommendations for / testing drugs' ABCB1-inducing activity.
View Article and Find Full Text PDFPrenatal smoke exposure (PreSE) is a risk factor for nicotine dependence, which is further enhanced by postnatal smoke exposure (PostSE). One susceptibility gene to nicotine dependence is Cytochrome P450 (CYP) 2A6, an enzyme responsible for the conversion of nicotine to cotinine in the liver. Higher CYP2A6 activity is associated with nicotine dependence and could be regulated through DNA methylation.
View Article and Find Full Text PDFThe transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) is considered as the master regulator of antioxidant and cytoprotective gene expressions. Moreover, it plays a pivotal role in cancer progression. Nrf2 mediates the adaptive response which contributes to the resistance to chemotherapeutic pro-oxidant drugs, such as cisplatin (CDDP), in various tumors, including bladder cancers.
View Article and Find Full Text PDFPrenatal smoke exposure (PSE) is a risk factor for nicotine dependence. One susceptibility gene for nicotine dependence is Cytochrome P450 (CYP) 2A6, an enzyme responsible for the conversion of nicotine to cotinine and nicotine clearance in the liver. Higher activity of the CYP2A6 enzyme is associated with nicotine dependence, but no research has addressed the PSE effects on the gene or its mouse homologue .
View Article and Find Full Text PDFGold-based compounds are of great interest in the field of medicinal chemistry as novel therapeutic (anticancer) agents due to their peculiar reactivity and mechanisms of action with respect to organic drugs. Despite their promising pharmacological properties, the possible toxic effects of gold compounds need to be carefully evaluated in order to optimize their design and applicability. This study reports on the potential toxicity of three experimental gold-based anticancer compounds featuring lansoprazole ligands () studied in an model, using rat precision cut kidney and liver slices (PCKS and PCLS, respectively).
View Article and Find Full Text PDFThe potential mammalian hepatotoxicity of a new class of GSH-responsive cyclodextrin-based nanosponges loaded with the anticancer drug doxorubicin (Dox-GSH-NS) was investigated. Previous studies showed that these nanosponges can release medicaments preferentially in cells having high GSH content, a common feature of chemoresistant cells, and showed enhanced anti-tumoral activity compared to free Dox in vitro and in vivo in cells with high GSH content. Following these promising results, we investigated here the Dox-GSH-NS hepatotoxicity in human HepG2 cells (in vitro) and in the organotypic cultures of rat precision-cut liver slices (PCLS, ex vivo), while their accumulation in rat liver was assessed in vivo.
View Article and Find Full Text PDFPrecision-cut intestinal slices (PCIS) is an ex vivo culture technique that found its applications in toxicology, drug transport and drug metabolism testing, as well as in fibrosis research. The main limiting factor of PCIS as experimental model is the relatively short viability of tissue slices. Here, we describe a strategy for extending the life-span of PCIS during culture using medium that is routinely used for growing intestinal organoids.
View Article and Find Full Text PDFMechanisms of toxicity and cellular transport of anticancer metallodrugs, including platinum-based agents, have not yet been fully elucidated. Here, we studied the toxic effects and accumulation mechanisms of cisplatin in healthy rat kidneys ex vivo, using the Precision Cut Tissue Slices (PCTS) method. In addition, for the first time, we investigated the nephrotoxic effects of an experimental anticancer cyclometallated complex [Au(py-H)(PTA)Cl]PF (PTA = 1,3,5-triazaphosphaadamantane).
View Article and Find Full Text PDFA series of organometallic Au N-heterocyclic carbene (NHC) complexes was synthesized and characterized for anticancer activity in four human cancer cell lines. The compounds' toxicity in healthy tissue was determined using precision-cut kidney slices (PCKS) as a tool to determine the potential selectivity of the gold complexes ex vivo. All evaluated compounds presented cytotoxic activity toward the cancer cells in the nano- or low micromolar range.
View Article and Find Full Text PDFDrug-induced cholestasis (DIC) is one of the leading manifestations of drug-induced liver injury (DILI). As the underlying mechanisms for DIC are not fully known and specific and predictive biomarkers and pre-clinical models are lacking, the occurrence of DIC is often only reported when the drug has been approved for registration. Therefore, appropriate models that predict the cholestatic potential of drug candidates and/or provide insight into the mechanism of DIC are highly needed.
View Article and Find Full Text PDFIntestinal P-gp and CYP3A4 work coordinately to reduce the intracellular concentration of drugs, and drug-drug interactions (DDIs) based on this interplay are of clinical importance and require pre-clinical investigation. Using precision-cut intestinal slices (PCIS) of human jejunum, ileum and colon, we investigated the P-gp/CYP3A4 interplay and related DDIs with P-gp inhibitors at the different regions of the human intestine with quinidine (Qi), dual substrate of P-gp and CYP3A4, as probe. All the P-gp inhibitors increased the intracellular concentrations of Qi by 2.
View Article and Find Full Text PDFBiopharm Drug Dispos
March 2017
Although intestinal P-glycoprotein (P-gp) has been extensively studied in vitro and in animals, its activity and the consequences of P-gp inhibition for drug disposition and toxicity in humans are still difficult to accurately extrapolate from these studies. Moreover, existing in vitro models do not take into consideration that the intestine is heterogeneous with respect to P-gp expression. Recently, we reported rat precision-cut intestinal slices (PCIS) as a physiological ex vivo model to study the regional gradient of P-gp activity and inhibition.
View Article and Find Full Text PDFCisplatin is currently one of the most widely-used chemotherapeutic agents against various malignancies. Its clinical application is limited, however, by inherent renal and cardiac toxicities and other side effects, of which the underlying mechanisms are only partly understood. Experimental studies show cisplatin generates reactive oxygen species, which impair the cell's antioxidant defense system, causing oxidative stress and potentiating injury, thereby culminating in kidney and heart failure.
View Article and Find Full Text PDFP-glycoprotein (P-gp) and cytochrome P450 3A (CYP3A) are differentially expressed along the intestine and work coordinately to reduce the intracellular concentration of xenobiotics and the absorption of orally taken drugs. Drug-drug interactions (DDIs) based on P-gp/CYP3A interplay are of clinical importance and require preclinical investigation. We investigated the P-gp/Cyp3a interplay and related DDIs with different P-gp inhibitors in the various regions of the rat intestine ex vivo using precision-cut intestinal slices (PCIS) with quinidine (Qi), a dual substrate of P-gp and Cyp3a, as the probe.
View Article and Find Full Text PDFExpert Opin Drug Metab Toxicol
September 2016
Introduction: The absorption, distribution, metabolism, excretion and toxicity (ADME-tox) processes of drugs are of importance and require preclinical investigation intestine in addition to the liver. Various models have been developed for prediction of ADME-tox in the intestine. In this review, precision-cut intestinal slices (PCIS) are discussed and highlighted as model for ADME-tox studies.
View Article and Find Full Text PDFFive platinum(II) complexes bearing a (1,3-dibenzyl)imidazol-2-ylidene ligand but different leaving groups trans to it were examined for cytotoxicity, DNA and cell cycle interference, vascular disrupting properties, and nephrotoxicity. The cytotoxicity of complexes 3a-c increased with the steric shielding of their leaving chloride ligand, and complex 3c, featuring two triphenylphosphanes, was the most efficacious, with submicromolar IC50 concentrations. Complexes 3a-c interacted with DNA in electrophoretic mobility shift and ethidium bromide binding assays.
View Article and Find Full Text PDFRat Precision-Cut Intestinal Slices (PCIS) were evaluated as ex vivo model to study the regional gradient of P-gp activity, and to investigate whether the rank order of inhibitory potency of P-gp inhibitors can be correctly reproduced in this model with more accurate IC50 values than with current in vitro models. PCIS were prepared from small intestine (duodenum, jejunum, ileum) and colon. Rhodamine 123 (R123) was used as P-gp substrate, while verapamil, cyclosporine A, quinidine, ketoconazole, PSC833 and CP100356 were employed as P-gp inhibitors.
View Article and Find Full Text PDFIntestinal fibrosis (IF) is a major complication of inflammatory bowel disease. IF research is limited by the lack of relevant in vitro and in vivo models. We evaluated precision-cut intestinal slices (PCIS) prepared from human, rat, and mouse intestine as ex vivo models mimicking the early-onset of (human) IF.
View Article and Find Full Text PDFWe report on an improved method of synthesis of N-benzylaminoferrocene-based prodrugs and demonstrate its applicability by preparing nine new aminoferrocenes. Their effect on the viability of selected cancer cells having different p53 status was studied. The obtained data are in agreement with the hypothesis that the toxicity of aminoferrocenes is not dependent upon p53 status.
View Article and Find Full Text PDFThe non-steroidal anti-inflammatory drug diclofenac (DCF) has a high prevalence of intestinal side effects in humans and rats. It has been reported that Mrp2 transporter deficient rats (Mrp2) are more resistant to DCF induced intestinal toxicity. This was explained in vivo by impaired Mrp2-dependent biliary transport of DCF-acylglucuronide (DAG), leading to decreased intestinal exposure to DAG and DCF.
View Article and Find Full Text PDFNon-steroidal anti-inflammatory drugs (NSAIDs) are widely used therapeutic agents, however, they are associated with a high prevalence of intestinal side effects. In this investigation, rat precision cut intestinal slices (PCIS) were evaluated as an ex vivo model to study NSAID-induced intestinal toxicity. Firstly, PCIS were incubated with 0-200 μM diclofenac (DCF), one of the most intensively studied NSAIDs, to investigate whether they could correctly reflect the toxic mechanisms.
View Article and Find Full Text PDFThe use of diclofenac (DCF), a nonsteroidal anti-inflammatory drug, is associated with a high prevalence of gastrointestinal side effects. In vivo studies in rodents suggested that reactive metabolites of DCF produced by the liver or the intestine might be responsible for this toxicity. In the present study, precision-cut intestinal slices (PCIS) prepared from the jejunum of 18 human donors were used as an ex vivo model to investigate whether DCF intestinal metabolites are responsible for its intestinal toxicity in man.
View Article and Find Full Text PDF