Clin Transl Med
December 2021
The recently discovered Omicron variant of SARS-CoV-2 has rapidly burst into the public and scientific eye, being detected in more than 26 countries around the world. Given its more than 50 mutations, there is widespread concern about its public health impact, leading the World Health Organization to designate it a variant of concern. This Commentary provides a summary of current knowledge and unknowns about this viral variant as of December 2, 2021 and summarizes the key questions that need to be rapidly answered.
View Article and Find Full Text PDFClinical and Translational Science Award (CTSA) TL1 trainees and KL2 scholars were surveyed to determine the immediate impact of the COVID-19 pandemic on training and career development. The most negative impact was lack of access to research facilities, clinics, and human subjects, plus for KL2 scholars lack of access to team members and need for homeschooling. TL1 trainees reported having more time to think and write.
View Article and Find Full Text PDFAcute respiratory distress syndrome (ARDS) is a severe, life-threatening form of respiratory failure characterized by pulmonary edema, inflammation, and hypoxemia due to reduced alveolar fluid clearance (AFC). Alveolar fluid clearance is required for recovery and effective gas exchange, and higher rates of AFC are associated with reduced mortality. Thyroid hormones play multiple roles in lung function, and L-3,5,3'-triiodothyronine (T3) has multiple effects on lung alveolar type II cells.
View Article and Find Full Text PDFDuring the 2020 Spring Festival in China, the outbreak of a novel coronavirus, named COVID-19 by WHO, brought on a worldwide panic. According to the clinical data of infected patients, radiologic evidence of lung edema is common and deserves clinical attention. Lung edema is a manifestation of acute lung injury (ALI) and may progress to hypoxemia and potentially acute respiratory distress syndrome (ARDS).
View Article and Find Full Text PDFBackground: In order to conduct translational science, scientists must combine domain-specific expertise with knowledge on how to identify and cross translational hurdles, and insights on positioning discoveries for the next translational stage. Expert educators from the Clinical and Translational Science Awards (CTSA) Consortium identified 97 knowledge, skills, and abilities (KSAs) important to include in training programs for translational scientists. To assist educators and trainees to use these KSAs, a conceptual model called "Personalized Pathways" was developed that prioritizes KSAs based on trainee background, research area, or phenotype, and expertise on the research team.
View Article and Find Full Text PDFCurr Opin Crit Care
August 2019
Purpose Of Review: This review summarizes current understanding of the pathophysiology of cardiogenic pulmonary edema, its causes and treatment.
Recent Findings: The pathobiology and classification of pulmonary edema is more complex than the hydrostatic vs. permeability dichotomy of the past.
The fifth in a 5-part series on the clinical and translational sciences educational pipeline, this paper focuses on strategies for developing leadership capacity among senior faculty and administrators responsible for clinical and translational science (CTS) research. Although progression in academic rank recognizes scientific excellence in research or scholarship, neither disciplinary training nor experience alone prepare senior faculty for the leadership challenges they inevitably face. Yet these faculty are increasingly responsible for multidisciplinary teams working within complex organizations with unclear or conflicting incentives that demand innovation.
View Article and Find Full Text PDFAcute respiratory distress syndrome (ARDS) is associated with high mortality. We sought to identify biological pathways in ARDS that differentiate survivors from non-survivors. We studied bronchoalveolar lavage fluid (BALF) from 36 patients with ARDS (20 survivors, 16 non-survivors).
View Article and Find Full Text PDFBiol Blood Marrow Transplant
August 2016
Pulmonary complications due to infection and idiopathic pneumonia syndrome (IPS), a noninfectious lung injury in hematopoietic stem cell transplant (HSCT) recipients, are frequent causes of transplantation-related mortality and morbidity. Our objective was to characterize the global bronchoalveolar lavage fluid (BALF) protein expression of IPS to identify proteins and pathways that differentiate IPS from infectious lung injury after HSCT. We studied 30 BALF samples from patients who developed lung injury within 180 days of HSCT or cellular therapy transfusion (natural killer cell transfusion).
View Article and Find Full Text PDFSWeep Imaging with Fourier Transformation (SWIFT) with gradient modulation and DC navigator retrospective gating is introduced as a 3D cine magnetic resonance imaging (MRI) method for the lung. The quasi-simultaneous excitation and acquisition in SWIFT enabled extremely high sensitivity to the fast-decaying parenchymal signals (TE=~4 μs), which are invisible with conventional MRI techniques. Based on respiratory motion information extracted from DC navigator signals, the SWIFT data were reconstructed to 3D cine images with 16 respiratory phases.
View Article and Find Full Text PDFHypoxia is a well-recognized consequence of venous admixture resulting from right to left intracardiac shunting. Right to left shunting is usually associated with high pulmonary artery pressure or alteration in the direction of blood flow due to an anatomical abnormality of the thorax. Surgical or percutaneous closure remains controversial; however it is performed frequently for patients presenting with clinical sequela presumed to be resulting from paradoxical embolization secondary to right to left shunting.
View Article and Find Full Text PDFAcute Respiratory Distress Syndrome (ARDS) is a devastating cause of hypoxic respiratory failure, which continues to have high mortality. It is expected that a comprehensive systems- level approach will identify global and complex changes that contribute to the development of ARDS and subsequent repair of the damaged lung. In the last decade, powerful genome-wide analytical and informatics tools have been developed, that have provided valuable insights into the mechanisms of complex diseases such as ARDS.
View Article and Find Full Text PDFAcute Respiratory Distress Syndrome (ARDS) continues to have a high mortality. Currently, there are no biomarkers that provide reliable prognostic information to guide clinical management or stratify risk among clinical trial participants. The objective of this study was to probe the bronchoalveolar lavage fluid (BALF) proteome to identify proteins that differentiate survivors from non-survivors of ARDS.
View Article and Find Full Text PDFIdiopathic pulmonary fibrosis (IPF) is a progressive disease of the middle aged and elderly with a prevalence of one million persons worldwide. The fibrosis spreads from affected alveoli into contiguous alveoli, creating a reticular network that leads to death by asphyxiation. Lung fibroblasts from patients with IPF have phenotypic hallmarks, distinguishing them from their normal counterparts: pathologically activated Akt signaling axis, increased collagen and α-smooth muscle actin expression, distinct gene expression profile, and ability to form fibrotic lesions in model organisms.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
November 2013
In rodent model systems, the sequential changes in lung morphology resulting from hyperoxic injury are well characterized and are similar to changes in human acute respiratory distress syndrome. In the injured lung, alveolar type two (AT2) epithelial cells play a critical role in restoring the normal alveolar structure. Thus characterizing the changes in AT2 cells will provide insights into the mechanisms underpinning the recovery from lung injury.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
November 2011
We previously reported that the 3,5,3'-triiodo-L-thyronine (T3)-induced increase of Na-K-ATPase activity in rat alveolar epithelial cells (AECs) required activation of Src kinase, PI3K, and MAPK/ERK1/2. In the present study, we assessed the role of Akt in Na-K-ATPase activity and the interaction between the PI3K and MAPK in response to T3 by using MP48 cells, inhibitors, and constitutively active mutants in the MP48 (alveolar type II-like) cell line. The Akt inhibitor VIII blocked T3-induced increases in Na-K-ATPase activity and amount of plasma membrane Na-K-ATPase protein.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
November 2009
Objective: Discuss the research needs of the critical illness and injury communities in the United States.
Data Sources: Workshop session held during the 5 National Institutes of Health Symposium on the Functional Genomics of Critical Illness and Injury (November 15, 2007).
Study Selection: The current clinical research infrastructure misses opportunities for synergy and does not address many important needs.
Am J Respir Crit Care Med
September 2008
Rationale: Edema fluid resorption is critical for gas exchange and requires active epithelial ion transport by Na, K-ATPase and other ion transport proteins.
Objectives: In this study, we sought to determine if alveolar fluid clearance (AFC) is stimulated by 3,3',5 triiodo-L-thyronine (T(3)).
Methods: AFC was measured in in situ ventilated lungs and ex vivo isolated lungs by instilling isosmolar 5% bovine serum albumin solution with fluorescein-labeled albumin tracer and measuring the change in fluorescein isothiocyanate-albumin concentration over time.
Am J Physiol Lung Cell Mol Physiol
April 2008
Thyroid hormone (T3) increases Na-K-ATPase activity in rat adult alveolar type II cells via a PI3K-dependent pathway. In these cells, dopamine and beta-adrenergic agonists can stimulate Na-K-ATPase activity through either PI3K or MAPK pathways. We assessed the role of the MAPK pathway in the stimulation of Na-K-ATPase by T3.
View Article and Find Full Text PDFCurr Opin Endocrinol Diabetes Obes
October 2007
Purpose Of Review: Nongenomic actions of 3,3',5-triiodo-L-thyronine (T3) occur quite rapidly usually via activation of signaling cascades. In this review, we focus on recent advances made in the understanding of activation of the phosphatidylinositol 3-kinase pathway by T3 in alveolar epithelial cells, resulting in upregulation of Na,K-ATPase hydrolytic activity and potential physiological significance of this finding.
Recent Findings: T3 stimulates the Src family of kinases.
Am J Physiol Lung Cell Mol Physiol
January 2007
Late in gestation, the developing air space epithelium switches from chloride and fluid secretion to sodium and fluid absorption. Absorption requires Na-K-ATPase acting in combination with apical sodium entry mechanisms. Hypothyroidism inhibits perinatal fluid resorption, and thyroid hormone [triiodothyronine (T3)] stimulates adult alveolar epithelial cell (AEC) Na-K-ATPase.
View Article and Find Full Text PDF