Caspases are key enzymes responsible for mediating apoptotic cell death. Across species, caspase-2 is the most conserved caspase and stands out due to unique features. Apart from cell death, caspase-2 also regulates autophagy, genomic stability and ageing.
View Article and Find Full Text PDFYeast cells can be killed upon expression of pro-apoptotic mammalian proteins. We have established a functional yeast survival screen that was used to isolate novel human anti-apoptotic genes overexpressed in treatment-resistant tumors. The screening of three different cDNA libraries prepared from metastatic melanoma, glioblastomas and leukemic blasts allowed for the identification of many yeast cell death-repressing cDNAs, including 28% of genes that are already known to inhibit apoptosis, 35% of genes upregulated in at least one tumor entity and 16% of genes described as both anti-apoptotic in function and upregulated in tumors.
View Article and Find Full Text PDFFas ligand (FasL) not only induces apoptosis in Fas receptor-bearing target cells, it is also able to transmit signals into the FasL-expressing cell via its intracellular domain (ICD). Recently, we described a Notch-like proteolytic processing of FasL that leads to the release of the FasL ICD into the cytoplasm and subsequent translocation into the nucleus where it may influence gene transcription. To study the molecular mechanism underlying such reverse FasL signaling in detail and to analyze its physiological importance in vivo, we established a knockout/knockin mouse model, in which wild-type FasL was replaced with a deletion mutant lacking the ICD.
View Article and Find Full Text PDFThe essential mitogen-activated protein kinase (MAP kinase), LmxMPK4, of Leishmania mexicana is minimally active when purified following recombinant expression in Escherichia coli and was therefore unsuitable for drug screening until now. Using an E. coli protein co-expression system we identified LmxMKK5, a STE7-like protein kinase from L.
View Article and Find Full Text PDFA striking difference of the life stages of the protozoan parasite Leishmania is a long flagellum in the insect stage promastigotes and a rudimentary organelle in the mammalian amastigotes. LmxMKK, a mitogen-activated protein (MAP) kinase kinase from Leishmania mexicana, is required for growth of a full-length flagellum. We identified LmxMPK3, a MAP kinase homologue, with a similar expression pattern as LmxMKK being not detectable in amastigotes, up-regulated during the differentiation to promastigotes, constantly expressed in promastigotes, and shut down during the differentiation to amastigotes.
View Article and Find Full Text PDFBackground: Leishmania parasites undergo profound morphological and biochemical changes while passing through their life cycle. Protein kinases have been shown to be involved in the differentiation from the extracellular flagellated promastigotes to the intracellular "non-flagellated" amastigotes and vice versa. Moreover, these enzymes are likely involved in the regulation of the proliferation of the different life stages.
View Article and Find Full Text PDFPhospholipases C are known to be important regulators of cellular processes but may also act as virulence factors of pathogenic microbes. At least three genes in the genome of the human-pathogenic fungus Candida albicans encode phospholipases with conserved phospholipase C (Plc) motifs. None of the deduced protein sequences contain N-terminal signal peptides, suggesting that these phospholipases are not secreted.
View Article and Find Full Text PDF