Satellite RNAs (satRNAs) are molecular parasites that depend on their non-homologous helper viruses (HVs) for essential biological functions. While there are multiple molecular and phylogenetic studies on satRNAs, there is no experimental evolution study on how satRNAs may evolve in common infection conditions. In this study, we serially passaged the Bamboo mosaic virus (BaMV) associated-satRNA (satBaMV) under conditions in which satBaMV either coinfects an uninfected host plant, , with BaMV or superinfects a transgenic expressing the full-length BaMV genome.
View Article and Find Full Text PDFHow the noisy expression of regulatory proteins affects timing of intracellular events is an intriguing fundamental problem that influences diverse cellular processes. Here we use the bacteriophage λ to study event timing in individual cells where cell lysis is the result of expression and accumulation of a single protein (holin) in the Escherichia coli cell membrane up to a critical threshold level. Site-directed mutagenesis of the holin gene generated phage variants that vary in their lysis times from 30 to 190 min.
View Article and Find Full Text PDFTaking an ecological perspective, this paper reports theoretical and empirical results concerning fatal bacterial infections of adult insects. Two models, each combining deterministic and stochastic elements, characterize how the pathogen's dynamics might govern an infected host's mortality rate. We analyze the models in detail for exponential pathogen growth, and apply them to observed insect mortality when the pathogen's growth is unregulated.
View Article and Find Full Text PDF(BaMV), a plant potexvirus, has been found only in infected bamboo species. It is frequently associated with a large, linear single-stranded satellite RNA (satBaMV) that encodes a non-structural protein. Decades of collecting across a wide geographic area in Asia have accumulated a sizable number of BaMV and satBaMV isolates.
View Article and Find Full Text PDFGroups of chronically infected reservoir-hosts contaminate resource patches by shedding a parasite׳s free-living stage. Novel-host groups visit the same patches, where they are exposed to infection. We treat arrival at patches, levels of parasite deposition, and infection of the novel host as stochastic processes, and derive the expected time elapsing until a host-jump (initial infection of a novel host) occurs.
View Article and Find Full Text PDFMigration is a primary force of biological evolution that alters allele frequencies and introduces novel genetic variants into populations. Recent migration has been proposed as the cause of the emergence of many infectious diseases, including those carried by blacklegged ticks in North America. Populations of blacklegged ticks have established and flourished in areas of North America previously thought to be devoid of this species.
View Article and Find Full Text PDFSatellite RNAs (satRNAs) are subviral agents that depend on cognate helper viruses for genome replication and encapsidation. Their negative impacts on helper viruses have been exploited to control plant viral diseases. SatBaMV is a commonly found satRNA associated with Bamboo mosaic virus (BaMV) that infects diverse bamboo species in the field.
View Article and Find Full Text PDFWe isolated 6 phages from 2 environmental water sources and assessed their ability to treat infection of . We found all 6 phages were able to significantly increase mean survival time (MST) of infected . Although phage traits, such as adsorption rate, burst size, and lysis time, varied significantly among these phages, none of the traits correlated significantly with MST.
View Article and Find Full Text PDFThe capsids of ssRNA phages comprise a single copy of an ~45 kDa maturation protein that serves to recognize the conjugative pilus as receptor, to protect the ends of the viral RNA and also to escort the genomic RNA into the host cytoplasm. In the Alloleviviridae, represented by the canonical phage Qβ, the maturation protein A(2) also causes lysis. This is achieved by inhibiting the activity of MurA, which catalyses the first committed step of murein biosynthesis.
View Article and Find Full Text PDFIt is generally thought that the adsorption rate of a bacteriophage correlates positively with fitness, but this view neglects that most phages rely only on exponentially growing bacteria for productive infections. Thus, phages must cope with the environmental stochasticity that is their hosts' physiological state. If lysogeny is one alternative, it is unclear how strictly lytic phages can survive the host stationary phase.
View Article and Find Full Text PDFThe population densities of many organisms have changed dramatically in recent history. Increases in the population density of medically relevant organisms are of particular importance to public health as they are often correlated with the emergence of infectious diseases in human populations. Our aim is to delineate increases in density of a common disease vector in North America, the blacklegged tick, and to identify the environmental factors correlated with these population dynamics.
View Article and Find Full Text PDFWe have sequenced and characterized two R-plasmid-dependent single-stranded RNA bacteriophages (RPD ssRNA phages), C-1 and Hagl1. Phage C-1 requires a conjugative plasmid of the IncC group, while Hgal1 requires the IncH group. Both the adsorption rate constants and one-step growth curves are determined for both phages.
View Article and Find Full Text PDFBackground: The appearance of plaques on a bacterial lawn is one of the enduring imageries in modern day biology. The seeming simplicity of a plaque has invited many hypotheses and models in trying to describe and explain the details of its formation. However, until now, there has been no systematic experimental exploration on how different bacteriophage (phage) traits may influence the formation of a plaque.
View Article and Find Full Text PDFBackground: Despite identical genotypes and seemingly uniform environments, stochastic gene expression and other dynamic intracellular processes can produce considerable phenotypic diversity within clonal microbes. One trait that provides a good model to explore the molecular basis of stochastic variation is the timing of host lysis by bacteriophage (phage).
Results: Individual lysis events of thermally-inducible λ lysogens were observed using a temperature-controlled perfusion chamber mounted on an inverted microscope.
Background: Bacterial biofilm is ubiquitous in nature. However, it is not clear how this crowded habitat would impact the evolution of bacteriophage (phage) life history traits. In this study, we constructed isogenic lambda phage strains that only differed in their adsorption rates, because of the presence/absence of extra side tail fibers or improved tail fiber J, and maker states.
View Article and Find Full Text PDFFor many bacteriophages (phages), the proteins responsible for host lysis and virion morphogenesis are expressed from the same polycistronic transcript. Such an expression pattern can potentially have a pleiotropic effect on the assembly rate and lysis time, thus affecting phage fitness. To study the effects of late promoter activity on phage life history traits and fitness, we constructed a series of isogenic phage lambda strains that differ only in their late promoter pR' sequences.
View Article and Find Full Text PDFThe first step of bacteriophage (phage) infection is the attachment of the phage virion onto a susceptible host cell. This adsorption process is usually described by mass-action kinetics, which implicitly assume an equal influence of host density and adsorption rate on the adsorption process. Therefore, an environment with high host density can be considered as equivalent to a phage endowed with a high adsorption rate, and vice versa.
View Article and Find Full Text PDFMany pathogen life histories include a free-living stage, often with anatomical and physiological adaptations promoting persistence outside of host tissues. More durable particles presumably require that the pathogen metabolize more resources per particle. Therefore, we hypothesize functional dependencies, pleiotropic constraints, between the rate at which free-living particles decay outside of host tissues and other pathogen traits, including virulence, the probability of infecting a host upon contact, and pathogen reproduction within host tissues.
View Article and Find Full Text PDFOptimality models assume that phenotypes evolve by natural selection largely independently of underlying genetic mechanisms. This neglect of genetic mechanisms is considered an advantage by some evolutionary biologists but a fatal flaw by others. The controversy has gone unresolved, in part, from a lack of complex phenotypes that meet optimality criteria and for which the underlying genetic mechanisms are known.
View Article and Find Full Text PDFThe effect of lysis timing on bacteriophage (phage) fitness has received little theoretical or experimental attention. Previously, the impact of lysis timing on phage fitness was studied using a theoretical model based on the marginal value theorem from the optimal foraging theory. An implicit conclusion of the model is that, for any combination of host quantity and quality, an optimal time to lyse the host would exist so that the phage fitness would be the highest.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2004
The Lyz endolysin of bacteriophage P1 was found to cause lysis of the host without a holin. Induction of a plasmid-cloned lyz resulted in lysis, and the lytic event could be triggered prematurely by treatments that dissipate the proton-motive force. Instead of requiring a holin, export was mediated by an N-terminal transmembrane domain (TMD) and required host sec function.
View Article and Find Full Text PDFDouble-stranded DNA phages require two proteins for efficient host lysis: the endolysin, a muralytic enzyme, and the holin, a small membrane protein. In an event that defines the end of the vegetative cycle, the lambda holin S acts suddenly to permeabilize the membrane. This permeabilization enables the R endolysin to attack the cell wall, after which cell lysis occurs within seconds.
View Article and Find Full Text PDFBacteriophages must destroy the bacterial cell wall to lyse their host and release their progeny into the environment. There are at least two distinct mechanisms by which phages destroy the cell wall. Bacteriophages with large genomes use a holin-endolysin system, while bacteriophages with small genomes encode a single lysis protein.
View Article and Find Full Text PDF