Publications by authors named "Inessa Khmel"

Article Synopsis
  • The study highlights the diverse biological effects of β-ionone, a volatile organic compound, on bacterial cells, specifically focusing on Escherichia coli and Bacillus subtilis.
  • It was found that β-ionone induces oxidative stress in E. coli through the OxyR/OxyS regulatory system, but not through the SoxR/SoxS system, suggesting a specific response to the compound.
  • Additionally, at high concentrations, β-ionone can cause protein and DNA damage, while showing no oxidative stress effects in Bacillus subtilis, indicating the varying impact of β-ionone across different bacterial species.
View Article and Find Full Text PDF

Volatile compounds emitted by bacteria can play a significant role in interacting with microorganisms, plants, and other organisms. In this work, we studied the effect of total gaseous mixtures of organic as well as inorganic volatile compounds (VCs) and individual pure volatile organic compounds (VOCs: ketones 2-nonanone, 2-heptanone, 2-undecanone, a sulfur-containing compound dimethyl disulfide) synthesized by the rhizosphere Pseudomonas chlororaphis 449 and Serratia plymuthica IC1270 strains, the soil-borne strain P. fluorescens B-4117, and the spoiled meat isolate S.

View Article and Find Full Text PDF

This paper reports the results of the large-scale field testing of composite materials with antibacterial properties in a tropical climate. The composite materials, based on a cotton fabric with a coating of metal oxide nanoparticles (TiO2 and/or ZnO), were produced using high-power ultrasonic treatment. The antibacterial properties of the materials were studied in laboratory tests on solid and liquid nutrient media using bacteria of different taxonomic groups (Escherichia coli, Chromobacterium violaceum, Pseudomonas chlororaphis).

View Article and Find Full Text PDF

Volatile organic compounds (VOCs) emitted by bacteria play an important role in the interaction between microorganisms and other organisms. They can inhibit the growth of phytopathogenic microorganisms, modulate plant growth, and serve as infochemicals. Here, we investigated the effects of ketones, alcohols, and terpenes on the colony biofilms of plant pathogenic strains and swimming motility, which can play an important role in the formation of biofilms.

View Article and Find Full Text PDF

Bacteria and fungi emit a huge variety of volatile organic compounds (VOCs) that can provide a valuable arsenal for practical use. However, the biological activities and functions of the VOCs are poorly understood. This work aimed to study the action of individual VOCs on the bacteria , plants, and fruit flies .

View Article and Find Full Text PDF

The bacteria 94 have a LuxI/LuxR type QS system consisting of AHL synthase SprI and the regulatory receptor SprR. We have previously shown that inactivation of the AHL synthase gene resulted in an increase in the invasive activity of correlated with an increased bacterial adhesion. In the present work, the effects of inactivation of the receptor SprR are studied.

View Article and Find Full Text PDF

Quorum Sensing (QS) system regulates gene expression in response to a change in the density of the bacterial population. Facultative pathogen Serratia proteamaculans 94 has a LuxI/LuxR type QS system consisting of regulatory protein SprR and AHL synthase SprI. Invasive activity of these bacteria appears at the stationary growth phase corresponding to a maximal density of the bacterial population in vitro.

View Article and Find Full Text PDF

A broad spectrum of volatile organic compounds' (VOCs') biological activities has attracted significant scientific interest, but their mechanisms of action remain little understood. The mechanism of action of two VOCs-the cyclic monoterpenes (-)-limonene and (+)-α-pinene-on bacteria was studied in this work. We used genetically engineered bioluminescent strains harboring stress-responsive promoters (responsive to oxidative stress, DNA damage, SOS response, protein damage, heatshock, membrane damage) fused to the genes of We showed that (-)-limonene induces the P and P promoters due to the formation of reactive oxygen species and, as a result, causes damage to DNA (SOSresponse), proteins (heat shock), and membrane (increases its permeability).

View Article and Find Full Text PDF

Microbial volatile organic compounds (VOCs) are cell metabolites that affect many physiological functions of prokaryotic and eukaryotic organisms. Earlier we have demonstrated the inhibitory effects of soil bacteria volatiles, including ketones, on cyanobacteria. Cyanobacteria are very sensitive to ketone action.

View Article and Find Full Text PDF

In this study, we investigated the quorum sensing (QS) regulatory system of the psychrotrophic strain 94 isolated from spoiled refrigerated meat. The strain produced several -acyl--homoserine-lactone (AHL) QS signal molecules, with -(3-oxo-hexanoyl)--homoserine lactone and -(3-hydroxy-hexanoyl)--homoserine lactone as two main types. The and genes encoding an AHL synthase and a receptor regulatory protein, respectively, were cloned and sequenced.

View Article and Find Full Text PDF

The study provides new evidence for Ag-coated polyester (PES) mediating inactivation by way of genetically engineered (without porins, from now denoted porinless bacteria). This allows the quantification of the bactericidal kinetics induced by the Ag surface without the intervention of Ag ions. Bacterial inactivation mediated by Ag-PES was seen to be completed within 60 min.

View Article and Find Full Text PDF

Microbial volatiles have a significant impact on the physiological functions of prokaryotic and eukaryotic organisms. Various ketones are present in volatile mixtures produced by plants, bacteria, and fungi. Our earlier results demonstrated the inhibitory effects of soil bacteria volatiles, including ketones, on cyanobacteria.

View Article and Find Full Text PDF

In the present work, we provide evidence for visible light irradiation of the Au/TiO₂ nanoparticles' surface plasmon resonance band (SPR) leading to electron injection from the Au nanoparticles to the conduction band of TiO₂. The Au/TiO₂ SPR band is shown to greatly enhance the light absorption of TiO₂ in the visible region. Evidence is presented for the light absorption by the Au/TiO₂ plasmon bands leading to the dissolution of Au nanoparticles.

View Article and Find Full Text PDF

New evidence is presented for the bacterial inactivation of E. coli presenting normal porins on sputtered Ag-Cu surfaces compared with similar E. coli porinless bacteria.

View Article and Find Full Text PDF

Many bacteria, fungi, and plants produce volatile organic compounds (VOCs) emitted to the environment. Bacterial VOCs play an important role in interactions between microorganisms and in bacterial-plant interactions. Here, we show that such VOCs as ketones 2-heptanone, 2-nonanone, and 2-undecanone inhibit the DnaKJE-ClpB bichaperone dependent refolding of heat-inactivated bacterial luciferases.

View Article and Find Full Text PDF

The ability to form biofilms plays an important role in bacteria-host interactions, including plant pathogenicity. In this work, we investigated the action of volatile organic compounds (VOCs) produced by rhizospheric strains of Pseudomonas chlororaphis 449, Pseudomonas fluorescens B-4117, Serratia plymuthica IC1270, as well as Serratia proteamaculans strain 94, isolated from spoiled meat, on biofilms formation by three strains of Agrobacterium tumefaciens which are causative agents of crown-gall disease in a wide range of plants. In dual culture assays, the pool of volatiles emitted by the tested Pseudomonas and Serratia strains suppressed the formation of biofilms of A.

View Article and Find Full Text PDF
Article Synopsis
  • Previous research shows that volatile organic compounds (VOCs) from bacteria influence competition between microorganisms and can benefit plant growth.
  • VOCs from Pseudomonas and Serratia strains have antibacterial and antifungal effects, killing harmful bacteria, fungi, and even small animals like flies and nematodes.
  • Gas chromatography-mass spectrometry analysis identified specific compounds like ketones and dimethyl disulfide that effectively inhibit the growth of various test organisms, highlighting their role in natural ecological interactions.
View Article and Find Full Text PDF

In the natural environment, bacteria predominantly exist in matrix-enclosed multicellular communities associated with various surfaces, referred to as biofilms. Bacteria in biofilms are extremely resistant to antibacterial agents thus causing serious problems for antimicrobial therapy. In this study, we showed that different plant phenolic compounds, at concentrations that did not or weakly suppressed bacterial growth, increased the capacity of Pseudomonas aeruginosa PAO1 to form biofilms.

View Article and Find Full Text PDF

We show that volatile organic compounds (VOCs) produced by rhizospheric strains Pseudomonas fluorescens B-4117 and Serratia plymuthica IC1270 may act as inhibitors of the cell-cell communication quorum-sensing (QS) network mediated by N-acyl homoserine lactone (AHL) signal molecules produced by various bacteria, including strains of Agrobacterium, Chromobacterium, Pectobacterium and Pseudomonas. This quorum-quenching effect was observed when AHL-producing bacteria were treated with VOCs emitted by strains B-4117 and IC1270 or with dimethyl disulfide (DMDS), the major volatile produced by strain IC1270. LC-MS/MS analysis revealed that treatment of strains Pseudomonas chlororaphis 449, Pseudomonas aeruginosa PAO1 or Ps.

View Article and Find Full Text PDF

Antibacterial drugs in the nitrofuran series, such as nitrofurazone, furazidin, nitrofurantoin and nifuroxazide, as well as the nitric oxide generators sodium nitroprusside and isosorbide mononitrate in concentrations that do not suppress bacterial growth, were shown to increase the capacity of pathogenic bacteria Pseudomonas aeruginosa PAO1 and Burkholderia cenocepacia 370 to form biofilms. At 25-100microg/ml, nitrofurans 2-2.5-fold enhanced biofilm formation of P.

View Article and Find Full Text PDF

Microcin C is a ribosome-synthesized heptapeptide that contains a modified adenosine monophosphate covalently attached to the C-terminal aspartate. Microcin C is a potent inhibitor of bacterial cell growth. Based on the in vivo kinetics of inhibition of macromolecular synthesis, Microcin C targets translation, through a mechanism that remained undefined.

View Article and Find Full Text PDF

Microcin C51 (MccC51) is an antimicrobial nucleotide-heptapeptide produced by a natural Escherichia coli strain. A 5.7-kb fragment of the pC51 plasmid carrying the genes involved in MccC51 production, secretion, and self-immunity was sequenced, and the genes were characterized.

View Article and Find Full Text PDF