Publications by authors named "Inessa Halets"

This paper examines a perspective on the use of newly engineered nanomaterials as effective and safe carriers of genes for the therapy of cancer. Three different groups of cationic dendrimers (PAMAM, phosphorus and carbosilane) were complexed with anticancer siRNA and their biophysical properties of the dendriplexes analyzed. The potential of the dendrimers as nanocarriers for anticancer siBcl-xl, siBcl-2, siMcl-1 siRNAs and a siScrambled sequence was explored.

View Article and Find Full Text PDF

This paper reviews the biodistribution, toxicity and pharmacokinetics of pure dendrimers and their complexes with nucleic acids (dendriplexes) in animals, including mice, rats, rabbits, and guinea pigs. Methods and results will both be discussed. The paradigm about dendrimers' toxicity based on in vitro studies should be revised; almost all dendrimers of low and middle generations are non-toxic in vivo, despite showing some cytotoxic effects in vitro.

View Article and Find Full Text PDF

In most articles, cytotoxicity of cationic polyamidoamine (PAMAM) dendrimers toward red blood cells has been exclusively explained by their surface charge. We have focused on dendrimer hydrophobicity as a second possible factor that determines this cytotoxicity. Using PAMAM-NH2 dendrimers from the 3rd to the 6th generations and PAMAM-NH2-C12(25%) dendrimer of the 4th generation bearing 25% acyl groups, these induced hemolysis that increased with their surface charge and hydrophobicity.

View Article and Find Full Text PDF

Thrombin, an enzyme from the hydrolase family, is the main component of the blood coagulation system. In ischemic stroke it acts as a serine protease that converts soluble fibrinogen into insoluble strands of fibrin forming blood clots in the brain. It has been found to phosphoresce at room temperature in the millisecond and microsecond ranges.

View Article and Find Full Text PDF

Dendrimers provide many exciting opportunities for potential biomedical applications. However, owing to their positively charged surfaces, poly(propyleneimine) (PPI) dendrimers show toxic and haemolytic activities. One of the methods for masking the peripheral cationic groups is to modify them using carbohydrate residues.

View Article and Find Full Text PDF