Biofilm-associated peri-implant infections pose a major problem in modern medicine. The understanding of biofilm development is hampered by biofilm complexity and the lack of robust clinical models. This study comprehensively characterized the dynamics of early biofilm formation in the transmucosal passage of implant abutments in 12 patients.
View Article and Find Full Text PDFBacterial adhesion to dental implants is the onset for the development of pathological biofilms. Reliable characterization of this initial process is the basis towards the development of anti-biofilm strategies. In the present study, single-cell force spectroscopy (SCFS), by means of an atomic force microscope connected to a microfluidic pressure control system (FluidFM), was used to comparably measure adhesion forces of different oral bacteria within a similar experimental setup to the common implant material titanium.
View Article and Find Full Text PDFBackground: Peri-implant mucositis and peri-implantitis are highly prevalent biofilm-associated diseases affecting the tissues surrounding dental implants. As antibiotic treatment is ineffective to fully cure biofilm mediated infections, antimicrobial modifications of implants to reduce or prevent bacterial colonization are called for. Preclinical in vivo evaluation of the functionality of new or modified implant materials concerning bacterial colonization and peri-implant health is needed to allow progress in this research field.
View Article and Find Full Text PDFThe RNA helicase RIG-I plays a key role in sensing pathogen-derived RNA. Double-stranded RNA structures bearing 5'-tri- or diphosphates are commonly referred to as activating RIG-I ligands. However, endogenous RNA fragments generated during viral infection via RNase L also activate RIG-I.
View Article and Find Full Text PDFClin Oral Implants Res
September 2020
Objectives: The aim of this study was to evaluate volume, vitality and diversity of biofilms on the abutment materials zirconia and titanium as a function of time using an in vivo model for the biofilm formation.
Materials And Methods: The development of biofilms on zirconia and titanium grade 4 test specimens in the human oral cavity over time was analysed. After pretreatment, a total of 96 titanium and 96 zirconia discs were fixed on 12 composite splints, which were worn by 12 volunteers.
Aim: SLC26A3 (DRA) mediates the absorption of luminal Cl in exchange for HCO in the distal intestine. Its expression is lost in congenital chloride diarrhoea (CLD) and strongly decreased in the presence of intestinal inflammation. To characterize the consequences of a loss of Slc26a3 beyond disturbed electrolyte transport, colonic mucus synthesis, surface accumulation and composition, pH microclimate, microbiome composition and development of inflammation was studied in slc26a3 mice.
View Article and Find Full Text PDFAggregatibacter and Haemophilus species are relevant human commensals and opportunistic pathogens. Consequently, their bacteriophages may have significant impact on human microbial ecology and pathologies. Our aim was to reveal the prevalence and diversity of bacteriophages infecting Aggregatibacter and Haemophilus species that colonize the human body.
View Article and Find Full Text PDFTo combat implant-associated infections, there is a need for novel materials which effectively inhibit bacterial biofilm formation. In the present study, the antiadhesive properties of titanium surface functionalization based on the "slippery liquid-infused porous surfaces" (SLIPS) principle were demonstrated and the underlying mechanism was analyzed. The immobilized liquid layer was stable over 13 days of continuous flow in an oral flow chamber system.
View Article and Find Full Text PDFBackground & Aims: Helicobacter pylori is remarkable for its genetic variation; yet, little is known about its genetic changes during early stages of human infection, as the bacteria adapt to their new environment. We analyzed genome and methylome variations in a fully virulent strain of H pylori during experimental infection.
Methods: We performed a randomized Phase I/II, observer-blind, placebo-controlled study of 12 healthy, H pylori-negative adults in Germany from October 2008 through March 2010.
Recombination plays a dominant role in the evolution of the bacterial pathogen Helicobacter pylori, but its dynamics remain incompletely understood. Here we use an in vitro transformation system combined with genome sequencing to study chromosomal integration patterns after natural transformation. A single transformation cycle results in up to 21 imports, and repeated transformations generate a maximum of 92 imports (8% sequence replacement).
View Article and Find Full Text PDFThe human diarrheal pathogens Campylobacter jejuni and Campylobacter coli interfere with host innate immune signaling by different means, and their flagellins, FlaA and FlaB, have a low intrinsic property to activate the innate immune receptor Toll-like receptor 5 (TLR5). We have investigated here the hypothesis that the unusual secreted, flagellin-like molecule FlaC present in C. jejuni, C.
View Article and Find Full Text PDFInhabitants of Túquerres in the Colombian Andes have a 25-fold higher risk of gastric cancer than inhabitants of the coastal town Tumaco, despite similar H. pylori prevalences. The gastric microbiota was recently shown in animal models to accelerate the development of H.
View Article and Find Full Text PDFThe epithelium is the main entry point for many viruses, but the processes that protect barrier surfaces against viral infections are incompletely understood. Here we identified interleukin 22 (IL-22) produced by innate lymphoid cell group 3 (ILC3) as an amplifier of signaling via interferon-λ (IFN-λ), a synergism needed to curtail the replication of rotavirus, the leading cause of childhood gastroenteritis. Cooperation between the receptor for IL-22 and the receptor for IFN-λ, both of which were 'preferentially' expressed by intestinal epithelial cells (IECs), was required for optimal activation of the transcription factor STAT1 and expression of interferon-stimulated genes (ISGs).
View Article and Find Full Text PDFRecent results indicate a significant contribution of innate immune signaling to maintain mucosal homeostasis, but the precise underlying signal transduction pathways are ill-defined. By comparative analysis of intestinal epithelial cells isolated from conventionally raised and germ-free mice, as well as animals deficient in the adaptor molecules MyD88 and TRIF, the TLR3 and TLR4, as well as the type I and III IFN receptors, we demonstrate significant TLR-mediated signaling under homeostatic conditions. Surprisingly, homeostatic expression of Reg3γ and Paneth cell enteric antimicrobial peptides critically relied on TRIF and, in part, TLR3 but was independent of IFN receptor signaling.
View Article and Find Full Text PDFObjective: Antimicrobial peptides (AMP) provide protection from infection by pathogenic microorganisms and restrict bacterial growth at epithelial surfaces to maintain mucosal homeostasis. In addition, they exert a significant anti-inflammatory activity. Here we analysed the anatomical distribution and biological activity of an orally administered AMP in the context of bacterial infection and host-microbial homeostasis.
View Article and Find Full Text PDFThe mouse pathobiont Helicobacter hepaticus can induce typhlocolitis in interleukin-10-deficient mice, and H. hepaticus infection of immunodeficient mice is widely used as a model to study the role of pathogens and commensal bacteria in the pathogenesis of inflammatory bowel disease. C57BL/6J Il10(-/-) mice kept under specific pathogen-free conditions in two different facilities (MHH and MIT), displayed strong differences with respect to their susceptibilities to H.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2013
Helicobacter pylori infects the stomachs of one in two humans and can cause sequelae that include ulcers and cancer. Here we sequenced the genomes of 97 H. pylori isolates from 52 members of two families living in rural conditions in South Africa.
View Article and Find Full Text PDFThe human stomach is a formidable barrier to orally ingested microorganisms and was long thought to be sterile. The discovery of Helicobacter pylori, a carcinogenic bacterial pathogen that infects the stomach mucosa of more than one half of all humans globally, has started a major paradigm shift in our understanding of the stomach as an ecological niche for bacteria. The special adaptations that enable H.
View Article and Find Full Text PDFMany dinoflagellate species are notorious for the toxins they produce and ecological and human health consequences associated with harmful algal blooms (HABs). Dinoflagellates are particularly refractory to genomic analysis due to the enormous genome size, lack of knowledge about their DNA composition and structure, and peculiarities of gene regulation, such as spliced leader (SL) trans-splicing and mRNA transposition mechanisms. Alexandrium ostenfeldii is known to produce macrocyclic imine toxins, described as spirolides.
View Article and Find Full Text PDFBackground: The dinoflagellate Alexandrium minutum typically produces paralytic shellfish poisoning (PSP) toxins, which are known only from cyanobacteria and dinoflagellates. While a PSP toxin gene cluster has recently been characterized in cyanobacteria, the genetic background of PSP toxin production in dinoflagellates remains elusive.
Results: We constructed and analysed an expressed sequence tag (EST) library of A.