Publications by authors named "Ines Stevic"

Background: Genome-wide DNA methylation profiling has recently been developed into a tool that allows tumor classification in central nervous system tumors. Extracellular vesicles (EVs) are released by tumor cells and contain high molecular weight DNA, rendering EVs a potential biomarker source to identify tumor subgroups, stratify patients and monitor therapy by liquid biopsy. We investigated whether the DNA in glioblastoma cell-derived EVs reflects genome-wide tumor methylation and mutational profiles and allows noninvasive tumor subtype classification.

View Article and Find Full Text PDF

The use of disease-specific signatures of microRNAs (miRNAs) in exosomes has become promising for clinical applications, either as biomarkers or direct therapeutic targets. However, a new approach for exosome enrichment and quantification of miRNAs is urgently needed for its clinical application, since the commercial techniques have shortcomings in quantity and quality. To overcome these deficiencies, we developed a new method for purification of exosomes with subsequent miRNA extraction, followed by quantitative reverse transcription polymerase chain reaction (RT-qPCR), and compared our assays with commercial techniques.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are a heterogeneous group of membrane-enclosed vesicles made of a phospholipid bilayer and are secreted by all cell types. EVs are present in a variety of body fluids containing proteins, DNA, RNA species, and lipids, and play an important role in cell- to-cell communication and are worth being considered as biomarkers for both early diagnosis of cancer patients and real-time monitoring of treatment response. Recently, emerging evidence verified EVs to have crucial roles in cancer progression and metastasis and a great potential in therapeutic applications.

View Article and Find Full Text PDF

Background: The focus of this study is to identify particular microRNA (miRNA) signatures in exosomes derived from plasma of 435 human epidermal growth factor receptor 2 (HER2)-positive and triple-negative (TN) subtypes of breast cancer (BC).

Methods: First, miRNA expression profiles were determined in exosomes derived from the plasma of 15 TNBC patients before neoadjuvant therapy using a quantitative TaqMan real-time PCR-based microRNA array card containing 384 different miRNAs. Forty-five miRNAs associated with different clinical parameters were then selected and mounted on microRNA array cards that served for the quantification of exosomal miRNAs in 435 BC patients before therapy and 20 healthy women.

View Article and Find Full Text PDF

Loading of microRNAs (miRNAs) into exosomes that are involved in cellular communication is a selective process. The current study investigates whether the enrichment of miRNAs in exosomes reflects the pathogenesis of breast cancer (BC) and ductal carcinoma in situ (DCIS). The levels of miRNAs were quantified in exosomes from plasma of 32 BC patients, 8 DCIS patients and 8 healthy women by TaqMan real-time PCR-based miRNA array cards containing 47 different miRNAs.

View Article and Find Full Text PDF

Specific microRNAs (miRNAs) are packaged in exosomes that regulate processes in tumor development and progression. The current study focuses on the influence of exosomal miRNAs in the pathogenesis of epithelial ovarian cancer (EOC). MiRNA profiles were determined in exosomes from plasma of 106 EOC patients, eight ovarian cystadenoma patients, and 29 healthy women by TaqMan real-time PCR-based miRNA array cards containing 48 different miRNAs.

View Article and Find Full Text PDF

The aim of this study was to establish a unique expression profile of circulating cell-free microRNAs (miRNAs) capable of differentiating between prostate cancer (PCa) patients with high-risk and intermediate-risk Gleason scores. MiRNA expression profiles were determined in plasma samples from 79 treatment-naïve PCa patients, 1-2 follow-up samples after radical prostatectomy (RP) from 51 out of the 79 PCa patients, and 33 healthy men, using a quantitative real-time PCR-based array containing 48 selected miRNAs. We identified 27 up- and 2 downregulated plasma miRNAs in PCa patients compared with healthy men.

View Article and Find Full Text PDF