Publications by authors named "Ines Samengo"

The central limit theorem states that, in the limits of a large number of terms, an appropriately scaled sum of independent random variables yields another random variable whose probability distribution tends to attain a stable distribution. The condition of independence, however, only holds in real systems as an approximation. To extend the theorem to more general situations, previous studies have derived a version of the central limit theorem that also holds for variables that are not independent.

View Article and Find Full Text PDF

Structural asymmetries of brain regions associated with lateralised functions have been extensively studied. However, there are fewer morphometric analyses of asymmetries of the gyri and sulci of the entire cortex. The current study assessed cortical asymmetries in a sample of healthy adults (N = 175) from an admixed population from South America.

View Article and Find Full Text PDF

Theories for autism spectrum disorder (ASD) have been formulated at different levels, ranging from physiological observations to perceptual and behavioral descriptions. Understanding the physiological underpinnings of perceptual traits in ASD remains a significant challenge in the field. Here we show how a recurrent neural circuit model that was optimized to perform sampling-based inference and displays characteristic features of cortical dynamics can help bridge this gap.

View Article and Find Full Text PDF

Inferring the value of a property of a large stochastic system is a difficult task when the number of samples is insufficient to reliably estimate the probability distribution. The Bayesian estimator of the property of interest requires the knowledge of the prior distribution, and in many situations, it is not clear which prior should be used. Several estimators have been developed so far in which the proposed prior us individually tailored for each property of interest; such is the case, for example, for the entropy, the amount of mutual information, or the correlation between pairs of variables.

View Article and Find Full Text PDF

In trichromats, color vision entails the projection of an infinite-dimensional space (the one containing all possible electromagnetic power spectra) onto the three-dimensional space that modulates the activity of the three types of cones. This drastic reduction in dimensionality gives rise to metamerism, that is, the perceptual chromatic equivalence between two different light spectra. The classes of equivalence of metamerism are revealed by color-matching experiments in which observers adjust the intensity of three monochromatic light beams of three preset wavelengths (the primaries) to produce a mixture that is perceptually equal to a given monochromatic target stimulus.

View Article and Find Full Text PDF

The amount of power in different frequency bands of the electroencephalogram (EEG) carries information about the behavioral state of a subject. Hence, neurologists treating epileptic patients monitor the temporal evolution of the different bands. We propose a covariance-based method to detect and characterize epileptic seizures operating on the band-filtered EEG signal.

View Article and Find Full Text PDF

Determining the strength of nonlinear, statistical dependencies between two variables is a crucial matter in many research fields. The established measure for quantifying such relations is the mutual information. However, estimating mutual information from limited samples is a challenging task.

View Article and Find Full Text PDF

In order to explore the metric structure of the space of remembered colors, a computer game was designed, where players with normal color vision had to store a color in memory, and later retrieve it by selecting the best match out of a continuum of alternatives. All tested subjects exhibited evidence of focal colors in their mnemonic strategy. We found no concluding evidence that the focal colors of different players tended to cluster around universal prototypes.

View Article and Find Full Text PDF

The study of the neural code aims at deciphering how the nervous system maps external stimuli into neural activity-the encoding phase-and subsequently transforms such activity into adequate responses to the original stimuli-the decoding phase. Several information-theoretical methods have been proposed to assess the relevance of individual response features, as for example, the spike count of a given neuron, or the amount of correlation in the activity of two cells. These methods work under the premise that the relevance of a feature is reflected in the information loss that is induced by eliminating the feature from the response.

View Article and Find Full Text PDF

In the study of the neural code, information-theoretical methods have the advantage of making no assumptions about the probabilistic mapping between stimuli and responses. In the sensory domain, several methods have been developed to quantify the amount of information encoded in neural activity, without necessarily identifying the specific stimulus or response features that instantiate the code. As a proof of concept, here we extend those methods to the encoding of kinematic information in a navigating rodent.

View Article and Find Full Text PDF

Chromatically perceptive observers are endowed with a sense of similarity between colors. For example, two shades of green that are only slightly discriminable are perceived as similar, whereas other pairs of colors, for example, blue and yellow, typically elicit markedly different sensations. The notion of similarity need not be shared by different observers.

View Article and Find Full Text PDF

Burst spike patterns are common in regions of the hippocampal formation such as the subiculum and medial entorhinal cortex (MEC). Neurons in these areas are immersed in extracellular electrical potential fluctuations often recorded as the local field potential (LFP). LFP rhythms within different frequency bands are linked to different behavioral states.

View Article and Find Full Text PDF

The accuracy with which humans detect chromatic differences varies throughout color space. For example, we are far more precise when discriminating two similar orange stimuli than two similar green stimuli. In order for two colors to be perceived as different, the neurons representing chromatic information must respond differently, and the difference must be larger than the trial-to-trial variability of the response to each separate color.

View Article and Find Full Text PDF

Thalamic neurons have been long assumed to fire in tonic mode during perceptive states, and in burst mode during sleep and unconsciousness. However, recent evidence suggests that bursts may also be relevant in the encoding of sensory information. Here, we explore the neural code of such thalamic bursts.

View Article and Find Full Text PDF

We develop the information-theoretical concepts required to study the statistical dependencies among three variables. Some of such dependencies are pure triple interactions, in the sense that they cannot be explained in terms of a combination of pairwise correlations. We derive bounds for triple dependencies, and characterize the shape of the joint probability distribution of three binary variables with high triple interaction.

View Article and Find Full Text PDF

Sensory neurons are often described in terms of a receptive field, that is, a linear kernel through which stimuli are filtered before they are further processed. If information transmission is assumed to proceed in a feedforward cascade, the receptive field may be interpreted as the external stimulus' profile maximizing neuronal output. The nervous system, however, contains many feedback loops, and sensory neurons filter more currents than the ones representing the transduced external stimulus.

View Article and Find Full Text PDF

The reliability of a spiking neuron depends on the frequency content of the driving input signal. Previous studies have shown that well above threshold, regularly firing neurons generate reliable responses when the input signal resonates with the firing frequency of the cell. Instead, well below threshold, reliable responses are obtained when the input frequency resonates with the subthreshold oscillations of the neuron.

View Article and Find Full Text PDF

Information may be encoded both in the individual activity of neurons and in the correlations between their activities. Understanding whether knowledge of noise correlations is required to decode all the encoded information is fundamental for constructing computational models, brain-machine interfaces, and neuroprosthetics. If correlations can be ignored with tolerable losses of information, the readout of neural signals is simplified dramatically.

View Article and Find Full Text PDF

Several studies have shown that bursting neurons can encode information in the number of spikes per burst: As the stimulus varies, so does the length of individual bursts. There presented stimuli, however, vary substantially among different sensory modalities and different neurons.The goal of this paper is to determine which kind of stimulus features can be encoded in burst length, and how those features depend on the mathematical properties of the underlying dynamical system.

View Article and Find Full Text PDF

The space of sensory stimuli is complex and high-dimensional. Yet, single neurons in sensory systems are typically affected by only a small subset of the vast space of all possible stimuli. A proper understanding of the input-output transformation represented by a given cell therefore requires the identification of the subset of stimuli that are relevant in shaping the neuronal response.

View Article and Find Full Text PDF

Sensory stimuli are usually composed of different features (the what) appearing at irregular times (the when). Neural responses often use spike patterns to represent sensory information. The what is hypothesized to be encoded in the identity of the elicited patterns (the pattern categories), and the when, in the time positions of patterns (the pattern timing).

View Article and Find Full Text PDF

Single neurons in the cerebral cortex are immersed in a fluctuating electric field, the local field potential (LFP), which mainly originates from synchronous synaptic input into the local neural neighborhood. As shown by recent studies in visual and auditory cortices, the angular phase of the LFP at the time of spike generation adds significant extra information about the external world, beyond the one contained in the firing rate alone. However, no biologically plausible mechanism has yet been suggested that allows downstream neurons to infer the phase of the LFP at the soma of their pre-synaptic afferents.

View Article and Find Full Text PDF

Spike patterns have been reported to encode sensory information in several brain areas. Here we assess the role of specific patterns in the neural code, by comparing the amount of information transmitted with different choices of the readout neural alphabet. This allows us to rank several alternative alphabets depending on the amount of information that can be extracted from them.

View Article and Find Full Text PDF

The coding properties of cells with different types of receptive fields have been studied for decades. ON-type neurons fire in response to positive fluctuations of the time-dependent stimulus, whereas OFF cells are driven by negative stimulus segments. Biphasic cells, in turn, are selective to up/down or down/up stimulus upstrokes.

View Article and Find Full Text PDF

At the single-neuron level, precisely timed spikes can either constitute firing-rate codes or spike-pattern codes that utilize the relative timing between consecutive spikes. There has been little experimental support for the hypothesis that such temporal patterns contribute substantially to information transmission. By using grasshopper auditory receptors as a model system, we show that correlations between spikes can be used to represent behaviorally relevant stimuli.

View Article and Find Full Text PDF