The cement sector is the second largest contributor to anthropogenic CO emissions, and several efforts have been made to reduce its environmental impact. One alternative that has gained interest in recent years involves the use of municipal solid waste incineration (MSWI) bottom ash (BA) as clinker/cement replacement. This paper studies the application of MSWI BA in three different ways: (i) aggregate (0 to 100 / %), (ii) partial binder substitute (0 to 30 / %), and (iii) filler (5 / %).
View Article and Find Full Text PDFSlaker grits (SG) and biomass fly ash (BFA), two waste streams generated in the pulp and paper industry, are commonly disposed of in landfills, a practice with a high economic and environmental burden. In this work, their individual valorization as fillers in a commercial screed mortar formulation was evaluated in order to achieve a more sustainable management practice. The waste streams were characterized in terms of true density, particle size and morphology, and chemical and mineralogical composition.
View Article and Find Full Text PDFFly ash (FA) and exhausted bed sands (sands wastes) that are generated in biomass burners for energy production are two of the wastes generated in the pulp and paper industry. The worldwide production of FA biomass is estimated at 10 million tons/year and is expected to increase. In this context, the present work aims to develop one-part alkali-activated materials with biomass FA (0-100 wt.
View Article and Find Full Text PDFOrdinary Portland Cement is the most widely used binder in the construction sector; however, a very high carbon footprint is associated with its production process. Consequently, more sustainable alternative construction materials are being investigated, namely, one-part alkali activated materials (AAMs). In this work, waste-based one-part AAMs binders were developed using only a blast furnace slag, as the solid precursor, and sodium metasilicate, as the solid activator.
View Article and Find Full Text PDF