Publications by authors named "Ines Massiot"

We demonstrate a method for seamless transfer from a parent flat substrate of basically any lithographic top-down or bottom-up pattern onto essentially any kind of surface. The nano- or microscale patterns, spanning macroscopic surface areas, can be transferred with high conformity onto a large variety of surfaces when such patterns are produced on a thin carbon film, grown on top of a sacrificial layer. The latter allows lifting the patterns from the flat parent substrate onto a water-air interface to be picked up by the host surface of choice.

View Article and Find Full Text PDF

While the number of techniques for patterning materials at the nanoscale exponentially increases, only a handful of methods approach the conformal patterning of strongly non-planar surfaces. Here, using the direct surface self-assembly of colloids by electrostatics, we produce highly conformal bottom-up nanopatterns with a short-range order. We illustrate the potential of this approach by devising functional nanopatterns on highly non-planar substrates such as pyramid-textured silicon substrates and inherently rough polycrystalline films.

View Article and Find Full Text PDF

We report on the fabrication of disordered nanostructures by combining colloidal lithography and silicon etching. We show good control of the short-range ordered colloidal pattern for a wide range of bead sizes from 170 to 850 nm. The inter-particle spacing follows a Gaussian distribution with the average distance between two neighboring beads (center to center) being approximately twice their diameter, thus enabling the nanopatterning with dimensions relevant to the light wavelength scale.

View Article and Find Full Text PDF

We propose a design to confine light absorption in flat and ultra-thin amorphous silicon solar cells with a one-dimensional silver grating embedded in the front window of the cell. We show numerically that multi-resonant light trapping is achieved in both TE and TM polarizations. Each resonance is analyzed in detail and modeled by Fabry-Perot resonances or guided modes via grating coupling.

View Article and Find Full Text PDF