Herein we describe a novel superhelicene structure consisting of three hexa--hexabenzocoronene (HBC) units arranged in a helical geometry and creating two carbo[5]helicenes and a carbo[7]helicene. The central HBC bears a tropone moiety, which induces a saddle-helix hybrid geometry into the 3D structure of the prepared nanographene. The introduction of multiple helicenes and the position of the tropone unit trigger near-infrared circularly polarized luminescence (NIR-CPL, up to 850 nm, | | = 3.
View Article and Find Full Text PDFSupramolecular hybrids of graphene quantum dots (GQDs) and phthalocyanine (Pc) dyes were studied as turn-OFF-ON photoluminescence nanosensors for detection of ds-DNA. Pcs with four (Pc4) and eight (Pc8) positive charges were selected to interact with negatively charged GQDs. The photoluminescence of the GQDs was quenched upon interaction with the Pcs, due to the formation of non-emissive complexes.
View Article and Find Full Text PDFMitochondria metabolism is an emergent target for the development of novel anticancer agents. It is amply recognized that strategies that allow for modulation of mitochondrial function in specific cell populations need to be developed for the therapeutic potential of mitochondria-targeting agents to become a reality in the clinic. In this work, we report dipolar and quadrupolar quinolizinium and benzimidazolium cations that show mitochondria targeting ability and localized light-induced mitochondria damage in live animal cells.
View Article and Find Full Text PDFThe development of appropriate methods to correlate the structure and optical properties of colloidal photonic structures is still a challenge. Structural information is mostly obtained by electron, X-ray, or optical microscopy methods and X-ray diffraction, while bulk spectroscopic methods and low resolution bright-field microscopy are used for optical characterization. Here, we describe the use of reflectance confocal microscopy as a simple and intuitive technique to provide a direct correlation between the ordered/disordered structural morphology of colloidal crystals and glasses, and their corresponding optical properties.
View Article and Find Full Text PDFIn this work we describe the linear and non-linear (chiro)optical properties of an enantiopure bis-perylenediimide (PDI) cyclohexane derivative. This compound exhibits upconversion based on a two-photon absorption (TPA) process with a cross-section value of 70 GM together with emission of circularly polarized luminescence (CPL), showing a g in the range of 10. This simple structure represents one of the scarce examples of purely organic compounds combining both TPA and CPL responses, together with large values of molar absorptivity and fluorescence quantum yield with emission in the 500-600 nm.
View Article and Find Full Text PDFA new family of distorted ribbon-shaped nanographenes was designed, synthesized, and their optical and electrochemical properties were evaluated, pointing out an unprecedented correlation between their structural characteristics and the two-photon absorption (TPA) responses and electrochemical band gaps. Three nanographene ribbons have been prepared: a seven-membered-ring-containing nanographene presenting a tropone moiety at the edge, its full-carbon analogue, and a purely hexagonal one. We have found that the TPA cross-sections and the electrochemical band gaps of the seven-membered-ring-containing compounds are higher and lower, respectively, than those of the fully hexagonal polycyclic aromatic hydrocarbon (PAH).
View Article and Find Full Text PDFCarbon nanodots (Cdots) are now emerging as promising nonlinear fluorophores for applications in biological environments. A thorough and systematic approach to the two-photon induced emission of Cdots that could provide design guidelines to control their nonlinear emission properties is still missing. In this work, we address the nonlinear optical spectroscopy of Cdots prepared by controlled chemical cutting of graphene oxide (GO).
View Article and Find Full Text PDFHerein we describe a distorted ribbon-shaped nanographene exhibiting unprecedented combination of optical properties in graphene-related materials, namely upconversion based on two-photon absorption (TPA-UC) together with circularly polarized luminescence (CPL). The compound is a graphene molecule of 2 nm length and 1 nm width with edge defects that promote the distortion of the otherwise planar lattice. The edge defects are an aromatic saddle-shaped ketone unit and a [5]carbohelicene moiety.
View Article and Find Full Text PDFThe synthesis of two triads with two porphyrinyl units linked by oligopyridine derivatives and a new β-functionalized porphyrin-dihydroazepine is described. One of the porphyrin-oligopyridine triads has a quinquepyridine unit connecting the porphyrins β-pyrrolic positions, while the other one has an asymmetric quaterpyridine with one of the pyridines fused to the porphyrin. All compounds have fluorescence emission quantum yields in the range of meso-tetraphenylporphyrin (16-22%).
View Article and Find Full Text PDFTurning on the fluorescence of [3]cumulenes: we report the luminescence at room temperature upon aggregation of [3]cumulenes functionalized with propeller-like heptagon-containing polyphenylenes. These endgroups turn on the emission of a [3]cumulene by steric protection and restriction of their intramolecular rotations in the aggregates.
View Article and Find Full Text PDFQuindoline (QUIND, indolo[3,2-b]quinoline) and cryptolepine (CRYPT, 5-methyl-10H-indolo[3,2-b]quinoline) together with their corresponding derivatives have been studied for decades due to their important biological activity against diseases like malaria. The biological activity of drugs is routinely investigated using fluorescence based methods. However, recent reports show that the photophysics of CRYPT and its analogues is not yet understood.
View Article and Find Full Text PDFThe safety and efficacy assessment of nanomaterials is a major concern of industry and academia. These materials, due to their nanoscale size, can have chemical, physical, and biological properties that differ from those of their larger counterparts. The encapsulation of natural ingredients can provide marked improvements in sun protection efficacy.
View Article and Find Full Text PDFCharged molecules based on the quinolizinum cation have potential applications as labels in fluorescence imaging in biological media under nonlinear excitation. A systematic study of the linear and nonlinear photophysics of derivatives of the quinolizinum cation substituted by either dimethylaniline or methoxyphenyl electron donors is performed. The effects of donor strength, conjugation length, and symmetry in the two-photon emission efficiency are analyzed in detail.
View Article and Find Full Text PDFThe two-photon absorption properties of a set of linear copolymers based on the regular alternation of a 2,4,6-tris(thiophen-2-yl)-1,3,5-triazine electron-accepting unit with different electron-donating groups attached to two of the thiophen ends were investigated. Comparison of these data with those of the analogous octupolar monomers and hyperbranched polymers allows us to understand the role of the triazine-thiophen core and its molecular architecture in the nonlinear optical properties of these polymeric materials. It is concluded that the arrangement of the push-pull unit into a unidimensional array, as it is the case of the linear copolymer, favours the two-photon absorption cross-section.
View Article and Find Full Text PDF