Nerve injuries cause permanent neurological disability due to limited axonal regeneration. Injury-dependent and -independent mechanisms have provided important insight into neuronal regeneration, however, common denominators underpinning regeneration remain elusive. A comparative analysis of transcriptomic datasets associated with neuronal regenerative ability revealed circadian rhythms as the most significantly enriched pathway.
View Article and Find Full Text PDFA bone marrow-derived mesenchymal stromal cell (MSC) transplant and a bioengineered nanofiber-hydrogel composite (NHC) have been shown to stimulate nervous tissue repair in the contused spinal cord in rodent models. Here, these two modalities were combined to assess their repair effects in the contused spinal cord in adult rats. Cohorts of contused rats were treated with MSC in NHC (MSC-NHC), MSC in phosphate-buffered saline (MSC-PBS), NHC, or PBS injected into the contusion site at 3 days post-injury.
View Article and Find Full Text PDFMesenchymal stromal cells (MSC) are used for cell therapy for spinal cord injury (SCI) because of their ability to support tissue repair by paracrine signaling. Preclinical and clinical research testing MSC transplants for SCI have revealed limited success, which warrants the exploration of strategies to improve their therapeutic efficacy. MSC are sensitive to the microenvironment and their secretome can be altered in vitro by exposure to different culture media.
View Article and Find Full Text PDFPre-clinical and clinical studies revealed that mesenchymal stromal cell (MSC) transplants elicit tissue repair. Conditioning MSC prior to transplantation may boost their ability to support repair. We investigated macrophage-derived inflammation as a means to condition MSC by comprehensively analyzing their transcriptome and secretome.
View Article and Find Full Text PDFAn injury to the spinal cord causes long-lasting loss of nervous tissue because endogenous nervous tissue repair and regeneration at the site of injury is limited. We engineered an injectable nanofiber-hydrogel composite (NHC) with interfacial bonding to provide mechanical strength and porosity and examined its effect on repair and neural tissue regeneration in an adult rat model of spinal cord contusion. At 28 days after treatment with NHC, the width of the contused spinal cord segment was 2-fold larger than in controls.
View Article and Find Full Text PDFSpinal cord injury results in destructive events that lead to tissue loss and functional impairments. A hallmark of spinal cord injury is the robust and persistent presence of inflammatory macrophages. Mesenchymal stem cells (MSCs) are known to benefit repair of the damaged spinal cord often associated with improved functional recovery.
View Article and Find Full Text PDFSpinal cord injury (SCI) causes immediate damage to the nervous tissue accompanied by loss of motor and sensory function. The limited self-repair competence of injured nervous tissue underscores the need for reparative interventions to recover function after SCI. The vasculature of the spinal cord plays a crucial role in SCI and repair.
View Article and Find Full Text PDF