Publications by authors named "Ines Lehner"

Transport proteins exhibiting broad substrate specificities are major determinants for the phenomenon of multidrug resistance. The Escherichia coli multidrug transporter EmrE, a 4-transmembrane, helical 12-kDa membrane protein, forms a functional dimer to transport a diverse array of aromatic, positively charged substrates in a proton/drug antiport fashion. Here, we report (13)C chemical shifts of the essential residue Glu(14) within the binding pocket.

View Article and Find Full Text PDF

Efflux pumps of the small multidrug resistance family bind cationic, lipophilic antibiotics and transport them across the membrane in exchange for protons. The transport cycle must involve various conformational states of the protein needed for substrate binding, translocation, and release. A fluorescent substrate will therefore experience a significant change of environment while being transported, which influences its fluorescence properties.

View Article and Find Full Text PDF

Rhodopsin is the visual pigment of the vertebrate rod photoreceptor cell and is the only member of the G protein coupled receptor family for which a crystal structure is available. Towards the study of dynamics in rhodopsin, we report NMR-spectroscopic investigations of alpha,epsilon-15N-tryptophan labeled rhodopsin in detergent micelles and reconstituted in phospholipids. Using a combination of solid state 13C,15N-REDOR and HETCOR experiments of all possible 13C'(i-1) carbonyl/15N(i)-tryptophan isotope labeled amide pairs, and H/D exchange 1H,15N-HSQC experiments conducted in solution, we assigned chemical shifts to all five rhodopsin tryptophan backbone 15N nuclei and partially to their bound protons.

View Article and Find Full Text PDF

The molecular dynamics of the 64 kDa ABC multidrug efflux pump LmrA from Lactococcus lactis within lipid membranes has been investigated by deuterium solid-state NMR. Deuteriomethyl-labeled alanine has been used to probe global protein backbone dynamics. A comparison of static deuterium NMR spectra of full-length LmrA in the resting state and its isolated transmembrane domain revealed a high mobility for the nucleotide binding domains.

View Article and Find Full Text PDF

Transporters form an interesting and complex class of membrane proteins. Many of them are potential drug targets due to their role in translocation of ions, small molecules and peptides across the membrane or due to their role in multidrug resistance. Hence elucidating their structure and mechanism is of great importance and may lead to a host of new drugs and methods to alter or inhibit their function.

View Article and Find Full Text PDF

The purpose of this study was to develop a protocol suitable for membrane protein extraction from limited starting material and to identify appropriate conditions for two-dimensional (2-D) gel electrophoresis. We used A549 cells, a human alveolar type II cell line, and evaluated three protein extraction methods based on different separation principles, namely protein solubility, detergent-based and density-based organelle separation. Detergent-based extraction achieved the highest yield with 14.

View Article and Find Full Text PDF