Publications by authors named "Ines Kutzner"

Background: Swimming is commonly recommended as postoperative rehabilitation following total hip arthroplasty (THA) and total knee arthroplasty (TKA). So far, in vivo hip and knee joint loads during swimming remain undescribed.

Methods: In vivo hip and knee joint loads were measured in 6 patients who underwent THA and 5 patients who underwent TKA with instrumented joint implants.

View Article and Find Full Text PDF

Knowledge of both tibio-femoral kinematics and kinetics is necessary for fully understanding knee joint biomechanics, guiding implant design and testing, and driving and validating computational models. In 2017, the CAMS-Knee datasets were presented, containing synchronized in vivo implant kinematics measured using a moving fluoroscope and tibio-femoral contact loads measured using instrumented implants from six subjects. However, to date, no representative summary of kinematics and kinetics obtained from measurements at the joint level of the same cohort of subjects exists.

View Article and Find Full Text PDF

During whole body vibrations, the total contact force in knee and hip joints consists of a static component plus the vibration-induced dynamic component. In two different cohorts, these forces were measured with instrumented joint implants at different vibration frequencies and amplitudes. For three standing positions on two platforms, the dynamic forces were compared to the static forces, and the total forces were related to the peak forces during walking.

View Article and Find Full Text PDF

Background: The onset and progression of osteoarthritis, but also the wear and loosening of the components of an artificial joint, are commonly associated with mechanical overloading of the structures. Knowledge of the mechanical forces acting at the joints, together with an understanding of the key factors that can alter them, are critical to develop effective treatments for restoring joint function. While static anatomy is usually the clinical focus, less is known about the impact of dynamic factors, such as individual muscle recruitment, on joint contact forces.

View Article and Find Full Text PDF

Standard musculoskeletal simulation tools now offer widespread access to internal loading conditions for use in improving rehabilitation concepts or training programmes. However, despite broad reliance on their outcome, the accuracy of such loading estimations, specifically in deep knee flexion, remains generally unknown. The aim of this study was to evaluate the error of tibio-femoral joint contact force (JCF) calculations using musculoskeletal simulation compared to in vivo measured JCFs in subjects with instrumented total knee endoprostheses during squat exercises.

View Article and Find Full Text PDF

Mechanical and kinematical aligning techniques are the usual positioning methods during total knee arthroplasty. However, alteration of the physiological joint line and unbalanced medio-lateral load distribution are considered disadvantages in the mechanical and kinematical techniques, respectively. The aim of this study was to analyse the influence of the joint line on the strain and stress distributions in an implanted knee and their sensitivity to rotational mal-alignment.

View Article and Find Full Text PDF

Background and purpose - Registry-based studies have reported an increased risk of aseptic tibial loosening for the cemented Low Contact Stress (LCS) total knee replacement compared with other cemented designs; however, the reasons for this have not been established. We made a retrieval analysis with the aim of identifying the failure mechanism. Patients and methods - We collected implants, cement, tissue, blood, and radiographs from 32 failed LCS Complete cases.

View Article and Find Full Text PDF

Combined knowledge of the functional kinematics and kinetics of the human body is critical for understanding a wide range of biomechanical processes including musculoskeletal adaptation, injury mechanics, and orthopaedic treatment outcome, but also for validation of musculoskeletal models. Until now, however, no datasets that include internal loading conditions (kinetics), synchronized with advanced kinematic analyses in multiple subjects have been available. Our goal was to provide such datasets and thereby foster a new understanding of how in vivo knee joint movement and contact forces are interlinked - and thereby impact biomechanical interpretation of any new knee replacement design.

View Article and Find Full Text PDF

Aquatic exercises are widely used for rehabilitation or preventive therapies in order to enable mobilization and muscle strengthening while minimizing joint loading of the lower limb. The load reducing effect of water due to buoyancy is a main advantage compared to exercises on land. However, also drag forces have to be considered that act opposite to the relative motion of the body segments and require higher muscle activity.

View Article and Find Full Text PDF

Walking is a task that we seek to understand because it is the most relevant human locomotion. Walking causes complex loading patterns and high load magnitudes within the human body. This work summarizes partially published load data collected in earlier in vivo measurement studies on 9 patients with telemeterized knee endoprostheses, 10 with hip endoprostheses and 5 with vertebral body replacements.

View Article and Find Full Text PDF

Unlabelled: As total knee arthroplasty (TKA) patients are getting more active, heavier and younger and structural material fatigue and delamination of tibial inserts becomes more likely in the second decade of good clinical performance it appears desirable to establish advanced pre-clinical test methods better characterizing the longterm clinical material behaviour. The questions of our study were 1) Is it possible to induce subsurface delamination and striated pattern wear on standard polyethylene TKA gliding surfaces? 2) Can we distinguish between γ-inert standard polyethylene (PEstand.30kGy) as clinical reference and vitamin E stabilised materials (PEVit.

View Article and Find Full Text PDF

Background: The medial knee contact force may be lowered by modified foot loading to prevent the progression of unilateral gonarthrosis but the real effects of such gait modifications are unknown. This study investigates how walking with a more medial or lateral rollover of the foot influences the in vivo measured knee contact forces.

Methods: Five subjects with telemeterized knee implants walked on a treadmill with pronounced lateral or medial foot loading.

View Article and Find Full Text PDF

The wear behaviour of total knee arthroplasty (TKA) is dominated by two wear mechanisms: the abrasive wear and the delamination of the gliding components, where the second is strongly linked to aging processes and stress concentration in the material. The addition of vitamin E to the bulk material is a potential way to reduce the aging processes. This study evaluates the wear behaviour and delamination susceptibility of the gliding components of a vitamin E blended, ultra-high molecular weight polyethylene (UHMWPE) cruciate retaining (CR) total knee arthroplasty.

View Article and Find Full Text PDF

Objective: The external knee adduction moment (EAM) is often considered a surrogate measure of the distribution of loads across the tibiofemoral joint during walking. This study was undertaken to quantify the relationship between the EAM and directly measured medial tibiofemoral contact forces (Fmed ) in a sample of subjects across a spectrum of activities.

Methods: The EAM for 9 patients who underwent total knee replacement was calculated using inverse dynamics analysis, while telemetric implants provided Fmed for multiple repetitions of 10 activities, including walking, stair negotiation, sit-to-stand activities, and squatting.

View Article and Find Full Text PDF

The loads acting in knee joints must be known for improving joint replacement, surgical procedures, physiotherapy, biomechanical computer simulations, and to advise patients with osteoarthritis or fractures about what activities to avoid. Such data would also allow verification of test standards for knee implants. This work analyzes data from 8 subjects with instrumented knee implants, which allowed measuring the contact forces and moments acting in the joint.

View Article and Find Full Text PDF

The external knee adduction moment is considered a surrogate measure for the medial tibiofemoral contact force and is commonly used to quantify the load reducing effect of orthopedic interventions. However, only limited and controversial data exist about the correlation between adduction moment and medial force. The objective of this study was to examine whether the adduction moment is indeed a strong predictor for the medial force by determining their correlation during gait.

View Article and Find Full Text PDF

Purpose: It is assumed that whole body vibration (WBV) improves muscle strength, bone density, blood flow and mobility and is therefore used in wide ranges such as to improve fitness and prevent osteoporosis and back pain. It is expected that WBV produces large forces on the spine, which poses a potential risk factor for the health of the spine. Therefore, the aim of the study was to measure the effect of various vibration frequencies, amplitudes, device types and body positions on the loads acting on a lumbar vertebral body replacement (VBR).

View Article and Find Full Text PDF

Study Design: Within-subject, repeated-measures design.

Objectives: To measure tibiofemoral contact forces during cycling in vivo and to quantify the influences of power, pedaling cadence, and seat height on tibiofemoral contact forces.

Background: Cycling is usually classified as a low-demand activity for the knee joint and is therefore recommended for persons with osteoarthritis and rehabilitation programs following knee surgery.

View Article and Find Full Text PDF

Since footwear is commonly used every day, its influence on knee joint loading and thereby on the development and progression of osteoarthritis may be crucial. So far the influence of footwear has been examined only indirectly. The aim of this study was to directly measure the effect of footwear on tibiofemoral contact loads during walking.

View Article and Find Full Text PDF

Background: Malalignment after total knee replacement could cause overloading of the implant bearing as well as of the bone itself, leading to osteolysis and early loosening. To quantify the stresses the implant has to withstand and to define a safe zone of limb alignment, the total contact forces as well as their mediolateral distribution have to be determined. Analytical gait data and mathematical models have been used for this purpose.

View Article and Find Full Text PDF

The patellofemoral (PF) joint plays an essential role in knee function, but little is known about the in vivo loading conditions at the joint. We hypothesized that the forces at the PF joint exceed the tibiofemoral (TF) forces during activities with high knee flexion. Motion analysis was performed in two patients with telemetric knee implants during walking, stair climbing, sit-to-stand, and squat.

View Article and Find Full Text PDF

A conventional method to unload the medial compartment of patients with gonarthrosis and thus to achieve pain reduction is the use of laterally wedged shoes. Our aim was to measure in vivo their effect on medial compartment loads using instrumented knee implants. Medial tibio-femoral contact forces were measured in six subjects with instrumented knee implants during walking with the following shoes: without wedge, with 5 and 10 mm wedges under the lateral sole, and with a laterally wedged insole (5 mm).

View Article and Find Full Text PDF

Knee osteoarthritis occurs predominately at the medial compartment. To unload the affected compartment, valgus braces are used which induce an additional valgus moment in order to shift the load more laterally. Until now the biomechanical effect of braces was mainly evaluated by measuring changes in external knee adduction moments.

View Article and Find Full Text PDF

Background: Detailed information about the loading of the knee joint is required for various investigations in total knee replacement. Up to now, gait analysis plus analytical musculo-skeletal models were used to calculate the forces and moments acting in the knee joint. Currently, all experimental and numerical pre-clinical tests rely on these indirect measurements which have limitations.

View Article and Find Full Text PDF