Publications by authors named "Ines Jadot"

Background: Sex differences have been observed in the development of obesity-related complications in patients, as well as in animal models. Accumulating evidence suggests that sex-dependent regulation of lipid metabolism contributes to sex-specific physiopathology. Lipid accumulation in the renal tissue has been shown to play a major role in the pathogenesis of obesity-induced kidney injury.

View Article and Find Full Text PDF
Article Synopsis
  • - Aristolochic acid nephropathy (AAN) is a serious kidney condition caused by consuming substances with aristolochic acids, often found in certain Chinese herbal remedies and contaminated food, leading to kidney damage and chronic conditions.
  • - Research used rodent models to study how AAN progresses from acute kidney injury (AKI) to chronic kidney disease (CKD), revealing that initial injury leads to inflammation and eventual severe kidney deterioration.
  • - Four key players in this transition were identified: tubular epithelial cells, endothelial cells, inflammatory cells, and myofibroblasts, highlighting their roles in kidney damage and potential future research directions.
View Article and Find Full Text PDF

Experimental aristolochic acid nephropathy is characterized by transient acute proximal tubule necrosis and inflammatory cell infiltrates followed by interstitial fibrosis and tubular atrophy. The respective role of T-cell subpopulations has never been studied in the acute phase of the mouse model, and was heretofore exclusively investigated by the use of several depletion protocols. As compared to mice injected with aristolochic acids alone, more severe acute kidney injury was observed after CD4 or CD8 T-cells depletion.

View Article and Find Full Text PDF

What is the central question of this study? The metabolic pathways regulating the effects of obesity on the kidney remain unknown. We sought to determine whether inducible nitric oxide synthase (iNOS) is involved in the underlying mechanisms of high-fat diet-induced kidney disease using a specific iNOS inhibitor, N6-(1-iminoethyl)-l-lysine hydrochloride (L-NIL). What is the main finding and its importance? We did not demonstrate an upregulation of iNOS renal expression after high caloric intake, suggesting that iNOS might not be a crucial player in the development of obesity-induced kidney disease.

View Article and Find Full Text PDF

Aristolochic Acid (AA) nephropathy (AAN) is a progressive tubulointerstitial nephritis characterized by an early phase of acute kidney injury (AKI) leading to chronic kidney disease (CKD). The reduced nitric oxide (NO) bioavailability reported in AAN might contribute to renal function impairment and progression of the disease. We previously demonstrated that L-arginine (L-Arg) supplementation is protective in AA-induced AKI.

View Article and Find Full Text PDF

The term "aristolochic acid nephropathy" (AAN) is used to include any form of toxic interstitial nephropathy that is caused either by ingestion of plants containing aristolochic acids (AA) as part of traditional phytotherapies (formerly known as "Chinese herbs nephropathy"), or by the environmental contaminants in food (Balkan endemic nephropathy). It is frequently associated with urothelial malignancies. Although products containing AA have been banned in most of countries, AAN cases remain regularly reported all over the world.

View Article and Find Full Text PDF

Aristolochic acid (AA) nephropathy (AAN), a progressive tubulointerstitial injury of toxic origin, is characterized by early and transient acute tubular necrosis. This process has been demonstrated to be associated with reduced nitric oxide (NO) production, which can disrupt the regulation of renal function. In this study, we tested the hypothesis that L-arginine (L-Arg) supplementation could restore renal function and reduce renal injury after AA intoxication.

View Article and Find Full Text PDF

Renal ischemia-reperfusion injury (IRI) is a pathological process that may lead to acute renal failure and chronic dysfunction in renal allografts. During IRI, hyaluronan (HA) accumulates in the kidney, but suppression of HA accumulation during IRI protects the kidney from ischemic insults. Here we tested whether Hyal1-/- and Hyal2-/- mice display exacerbated renal damage following unilateral IRI due to a higher HA accumulation in the post-ischemic kidney compared with that in the kidney of wild-type mice.

View Article and Find Full Text PDF

Hyaluronidase 1 (HYAL1) and hyaluronidase 2 (HYAL2) are the major hyaluronidases acting synergistically to degrade hyaluronan (HA). In the kidney, HA is distributed heterogeneously. Our goal was to determine the consequences of a lack of either HYAL1 or HYAL2 (using specific knockout mice) on renal function and on renal HA accumulation.

View Article and Find Full Text PDF

Background: Ischaemia-reperfusion injury (IRI) to the kidney is a complex pathophysiological process that leads to acute renal failure and chronic dysfunction in renal allografts. It was previously demonstrated that during IRI, hyaluronan (HA) accumulates in the cortical and external medullary interstitium along with an increased expression of its main receptor, CD44, on inflammatory and tubular cells. The HA-CD44 pair may be involved in persistent post-ischaemic inflammation.

View Article and Find Full Text PDF