Publications by authors named "Ines Ibanez"

Article Synopsis
  • Plant functional traits are important for understanding how different species acquire resources, with separate factors for aboveground (leaves) and belowground (roots) traits, differing from broader trends.
  • The study focuses on intraspecific variation within seedlings, which experience high mortality, and aims to uncover the relationship between these seedlings' traits and factors like soil nutrients and light.
  • Results indicated that leaf and root traits operate on different axes, highlighting an emerging collaboration axis belowground, and suggest limited links between traits and environmental factors, indicating seedlings face specific constraints that may affect their adaptation to changing conditions.
View Article and Find Full Text PDF
Article Synopsis
  • - The study examines the relationship between tree maturation size and reproduction, finding that larger tree species tend to start reproducing at a smaller size than expected, challenging previous assumptions.
  • - Researchers analyzed seed production data from 486 tree species across different climates, revealing that maturation size increases with maximum size but not in a straightforward manner.
  • - The results indicate that this trend is particularly pronounced in colder climates, highlighting the importance of understanding maturation size to better predict how forests will respond to climate change and disturbances.
View Article and Find Full Text PDF

Arbuscular mycorrhizal fungi (AMF) are widespread obligate symbionts of plants. This dynamic symbiosis plays a large role in successful plant performance, given that AMF help to ameliorate plant responses to abiotic and biotic stressors. Although the importance of this symbiosis is clear, less is known about what may be driving this symbiosis, the plant's need for nutrients or the excess of plant photosynthate being transferred to the AMF, information critical to assess the functionality of this relationship.

View Article and Find Full Text PDF

1. Though not often examined together, both plant-soil feedbacks (PSFs) and functional traits have important influences on plant community dynamics and could interact. For example, seedling functional traits could impact seedling survivorship responses to soils cultured by conspecific versus heterospecific adults.

View Article and Find Full Text PDF
Article Synopsis
  • Masting is when trees produce a lot of seeds at different times, which helps them survive by confusing animals that eat seeds.
  • However, this can be bad for the animals that help trees spread their seeds because they rely on a steady food supply.
  • Researchers found that some trees avoid masting to keep their disperser animals happy, especially in different climates and depending on how much nutrients they need to grow.
View Article and Find Full Text PDF

Invasive species science has focused heavily on the invasive agent. However, management to protect native species also requires a proactive approach focused on resident communities and the features affecting their vulnerability to invasion impacts. Vulnerability is likely the result of factors acting across spatial scales, from local to regional, and it is the combined effects of these factors that will determine the magnitude of vulnerability.

View Article and Find Full Text PDF

The movement of plant species across the globe exposes native communities to new species introductions. While introductions are pervasive, two aspects of variability underlie patterns and processes of biological invasions at macroecological scales. First, only a portion of introduced species become invaders capable of substantially impacting ecosystems.

View Article and Find Full Text PDF

The relationships that control seed production in trees are fundamental to understanding the evolution of forest species and their capacity to recover from increasing losses to drought, fire, and harvest. A synthesis of fecundity data from 714 species worldwide allowed us to examine hypotheses that are central to quantifying reproduction, a foundation for assessing fitness in forest trees. Four major findings emerged.

View Article and Find Full Text PDF
Article Synopsis
  • Lack of data on tree seed production across different climates makes it hard to understand how seed availability affects forest regeneration and biodiversity.
  • A global analysis shows that seed abundance increases significantly (by 250 times) from cold-dry to warm-wet climates, mainly due to a hundredfold increase in seeds produced by the same size tree.
  • This dramatic rise in seed supply could be influenced by either evolutionary adaptations to intense species interactions or by the warm, moist climate's direct impact on tree fecundity, which may also affect food webs and species interactions, especially in wet tropical regions.
View Article and Find Full Text PDF

Objectives: When bowel preparation (BP) is inadequate, international guidelines recommend repeating the colonoscopy within 1 year to avoid missing clinically relevant lesions. We aimed to determine the rate of missed lesions in patients with inadequate BP through a very early repeat colonoscopy with adequate BP.

Methods: Post hoc analysis was conducted using data collected from a prospective multicenter randomized clinical trial including patients with inadequate BP and then repeat colonoscopy.

View Article and Find Full Text PDF

Tree fecundity and recruitment have not yet been quantified at scales needed to anticipate biogeographic shifts in response to climate change. By separating their responses, this study shows coherence across species and communities, offering the strongest support to date that migration is in progress with regional limitations on rates. The southeastern continent emerges as a fecundity hotspot, but it is situated south of population centers where high seed production could contribute to poleward population spread.

View Article and Find Full Text PDF

Plant-mycorrhizal interactions mediate plant nitrogen (N) limitation and can inform model projections of the duration and strength of the effect of increasing CO on plant growth. We present dendrochronological evidence of a positive, but context-dependent fertilization response of Quercus rubra L. to increasing ambient CO (iCO) along a natural soil nutrient gradient in a mature temperate forest.

View Article and Find Full Text PDF

Despite its importance for forest regeneration, food webs, and human economies, changes in tree fecundity with tree size and age remain largely unknown. The allometric increase with tree diameter assumed in ecological models would substantially overestimate seed contributions from large trees if fecundity eventually declines with size. Current estimates are dominated by overrepresentation of small trees in regression models.

View Article and Find Full Text PDF

Phenological escape, a strategy that deciduous understory plants use to access direct light in spring by leafing out before the canopy closes, plays an important role in shaping the recruitment of temperate tree seedlings. Previous studies have investigated how climate change will alter these dynamics for herbaceous species, but there is a knowledge gap related to how woody species such as tree seedlings will be affected. Here, we modeled temperate tree seedling leaf-out phenology and canopy close phenology in response to environmental drivers and used climate change projections to forecast changes to the duration of spring phenological escape.

View Article and Find Full Text PDF

Indirect climate effects on tree fecundity that come through variation in size and growth (climate-condition interactions) are not currently part of models used to predict future forests. Trends in species abundances predicted from meta-analyses and species distribution models will be misleading if they depend on the conditions of individuals. Here we find from a synthesis of tree species in North America that climate-condition interactions dominate responses through two pathways, i) effects of growth that depend on climate, and ii) effects of climate that depend on tree size.

View Article and Find Full Text PDF

Background: Colonoscopy attendance is a key quality parameter in colorectal cancer population screening programmes. Within these programmes, educative interventions with bidirectional contact carried out by trained personnel have been proved to be an important tool for colonoscopy attendance improvement, and because of its huge clinical and economic impact, they have been widely implemented. However, outside of this population programmes, educative measures to improve colonoscopy attendance have been poorly studied and no navigation interventions are usually performed.

View Article and Find Full Text PDF

Revegetation is the most common procedure in the restoration of disturbed areas; this practice usually aims at reconstructing plant communities that can last without further management. A low-cost strategy to assist these efforts is the application of ecological knowledge in the design of the restoration. Promoting ecological processes that enhance the functioning of the restored community could result in higher restoration success.

View Article and Find Full Text PDF

The capacity of forests to recover after disturbance, i.e., their resilience, determines their ability to persist and function over time.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is one of the deadliest cancers due to its late diagnosis with the main risk factor being liver cirrhosis (LC). Glycan structures from glycoproteins are usually altered in cancer. Blood plasma from 111 healthy and sick donors was analyzed to determine the post-translational modifications (PTM) of intact Aα-, Bβ-, and γ-subunits of fibrinogen, a glycoprotein predominantly produced in liver cells.

View Article and Find Full Text PDF

Most forest ecosystems are simultaneously affected by concurrent global change drivers. However, when assessing these effects, studies have mainly focused on the responses to single factors and have rarely evaluated the joined effects of the multiple aspects of environmental change. Here, we analyzed the combined effects of anthropogenic nitrogen (N) deposition and climatic conditions on the radial growth of Acer saccharum, a dominant tree species in eastern North American forests.

View Article and Find Full Text PDF

Predictions of plant responses to climate change are frequently based on organisms' presence in warmer locations, which are then assumed to reflect future performance in cooler areas. However, as plant life stages may be affected differently by environmental changes, there is little empirical evidence that this approach provides reliable estimates of short-term responses to global warming. Under this premise, we analyzed 8 years of early recruitment data, seed production and seedling establishment and survival, collected for two tree species at two latitudes.

View Article and Find Full Text PDF

. Individuals with a family history of colorectal cancer (CRC) have an increased risk of CRC. We evaluated the diagnostic yield of CCE in the detection of lesions and also two different colon preparations.

View Article and Find Full Text PDF

Plant distributions are expected to shift in response to climate change, and range expansion dynamics will be shaped by the performance of individuals at the colonizing front. These plants will encounter new biotic communities beyond their range edges, and the net outcome of these encounters could profoundly affect colonization success. However, little is known about how biotic interactions vary across range edges and this has hindered efforts to predict changes in species distributions in response to climate change.

View Article and Find Full Text PDF

Plant species aboveground allometry can be viewed as a functional trait that reflects the evolutionary trade-off between above- and belowground resources. In forest trees, allometry is related to productivity and resilience in different environments, and it is tightly connected with a compromise between efficiency-safety and competitive ability. A better understanding on how this trait varies within and across species is critical to determine the potential of a species/population to perform along environmental gradients.

View Article and Find Full Text PDF