Publications by authors named "Ines Hernandez Rodriguez"

Article Synopsis
  • Fanconi anemia (FA) is a rare genetic disorder marked by varying symptoms and significant chromosome fragility, leading to severe health issues like cancer and bone marrow failure.
  • The Spanish Registry of Patients with FA gathered data from 227 patients over 30 years, revealing an 86% cumulative cancer incidence by age 50, with outcomes differing based on chromosome fragility and specific gene mutations.
  • Findings suggest that patients with mutations allowing some protein function (genetic hypomorphism) tend to have better health outcomes, indicating potential for new therapies that could enhance mutant FA protein function to improve patient prognosis.
View Article and Find Full Text PDF

Hereditary hemochromatosis (HH) is an iron metabolism disease clinically characterized by excessive iron deposition in parenchymal organs such as liver, heart, pancreas, and joints. It is caused by mutations in at least five different genes. HFE hemochromatosis is the most common type of hemochromatosis, while non-HFE related hemochromatosis are rare cases.

View Article and Find Full Text PDF

Red blood cell (RBC) morphology is, in general, the key diagnostic feature for hereditary spherocytosis (HS) and hereditary elliptocytosis (HE). However, in hereditary pyropoikilocytosis (HPP), the severe clinical form of HE, the morphological diagnosis is difficult due to the presence of a RBC morphological picture characterized by a mixture of elliptocytes, spherocytes, tear-drop cells, and fragmented cells. This difficulty increases in new-borns and/or patients requiring frequent transfusions, making impossible the prediction of the disease course or its severity.

View Article and Find Full Text PDF

The purpose of this work is to develop a hematocrit-independent method for the detection of beta-thalassemia trait (β-TT) and iron deficiency anemia (IDA), through the rheological characterization of whole blood samples from different donors. The results obtained herein are the basis for the development of a front microrheometry point-of-care device for the diagnosis and clinical follow-up of β-TT patients suffering hematological diseases and alterations in the morphology of the red blood cell (RBC). The viscosity is calculated as a function of the mean front velocity by detecting the sample fluid-air interface advancing through a microfluidic channel.

View Article and Find Full Text PDF

Iron deficiency anaemia is highly prevalent worldwide. In the surgical patient, anaemia of any cause implies higher morbidity and mortality in the post-operative period. This is especially important in patients with peripheral artery disease, as they have very high rates of anaemia due to iron deficiency or other causes.

View Article and Find Full Text PDF

Hereditary hyperferritinemia-cataract syndrome (HHCS) is a rare disease characterized by high serum ferritin levels, congenital bilateral cataracts, and the absence of tissue iron overload. This disorder is produced by mutations in the iron responsive element (IRE) located in the 5' untranslated regions (UTR) of the light ferritin () gene. A canonical IRE is a mRNA structure that interacts with the iron regulatory proteins (IRP1 and IRP2) to post-transcriptionally regulate the expression of proteins related to iron metabolism.

View Article and Find Full Text PDF

Hereditary red blood cell (RBC) membranopathies are characterized by mutations in genes encoding skeletal proteins that alter the membrane complex structure. Hereditary spherocytosis (HS) is the most common inherited RBC membranopathy leading to hereditary hemolytic anemia with a worldwide distribution and an estimated prevalence, in Europe, of about 1:2000 individuals. The recent availability of targeted next generation sequencing (t-NGS) and its combination with RBC deformability measured with a laser-assisted optical rotational ektacytometer (LoRRca) has demonstrated to be the most powerful contribution to lower the percentage of hereditary hemolytic anemia undiagnosed cases.

View Article and Find Full Text PDF

Congenital Dyserythropoietic Anemia (CDA) is a heterogeneous group of hematological disorders characterized by chronic hyporegenerative anemia and distinct morphological abnormalities of erythroid precursors in the bone marrow. In many cases, a final diagnosis is not achieved due to different levels of awareness for the diagnosis of CDAs and lack of use of advanced diagnostic procedures. Researchers have identified five major types of CDA: types I, II, III, IV, and X-linked dyserythropoietic anemia and thrombocytopenia (XLDAT).

View Article and Find Full Text PDF

Ferritin is a multimeric protein composed of light (L-ferritin) and heavy (H-ferritin) subunits that binds and stores iron inside the cell. A variety of mutations have been reported in the L-ferritin subunit gene ( gene) that cause the following five diseases: (1) hereditary hyperferritinemia with cataract syndrome (HHCS), (2) neuroferritinopathy, a subtype of neurodegeneration with brain iron accumulation (NBIA), (3) benign hyperferritinemia, (4) L-ferritin deficiency with autosomal dominant inheritance, and (5) L-ferritin deficiency with autosomal recessive inheritance. Defects in the gene lead to abnormally high levels of serum ferritin (hyperferritinemia) in HHCS and benign hyperferritinemia, while low levels (hypoferritinemia) are present in neuroferritinopathy and in autosomal dominant and recessive L-ferritin deficiency.

View Article and Find Full Text PDF