Publications by authors named "Ines Heise"

Article Synopsis
  • Evidence shows whirlin has different roles in neurons, but its impact on behavior and function hasn't been fully explored.
  • A mutation in the whirlin gene, identified through a genetic screening, leads to hearing issues and increased hyperactivity in mice.
  • The study demonstrates that whirlin is crucial for both hearing and activity-related behaviors, indicating broader roles for this protein in brain function.
View Article and Find Full Text PDF

Switches between global sleep and wakefulness states are believed to be dictated by top-down influences arising from subcortical nuclei. Using forward genetics and in vivo electrophysiology, we identified a recessive mouse mutant line characterized by a substantially reduced propensity to transition between wake and sleep states with an especially pronounced deficit in initiating rapid eye movement (REM) sleep episodes. The causative mutation, an Ile102Asn substitution in the synaptic vesicular protein, VAMP2, was associated with morphological synaptic changes and specific behavioral deficits, while in vitro electrophysiological investigations with fluorescence imaging revealed a markedly diminished probability of vesicular release in mutants.

View Article and Find Full Text PDF

Determining the genetic bases of age-related disease remains a major challenge requiring a spectrum of approaches from human and clinical genetics to the utilization of model organism studies. Here we report a large-scale genetic screen in mice employing a phenotype-driven discovery platform to identify mutations resulting in age-related disease, both late-onset and progressive. We have utilized N-ethyl-N-nitrosourea mutagenesis to generate pedigrees of mutagenized mice that were subject to recurrent screens for mutant phenotypes as the mice aged.

View Article and Find Full Text PDF

Transgenic mouse models expressing mutant superoxide dismutase 1 (SOD1) have been critical in furthering our understanding of amyotrophic lateral sclerosis (ALS). However, such models generally overexpress the mutant protein, which may give rise to phenotypes not directly relevant to the disorder. Here, we have analysed a novel mouse model that has a point mutation in the endogenous mouse Sod1 gene; this mutation is identical to a pathological change in human familial ALS (fALS) which results in a D83G change in SOD1 protein.

View Article and Find Full Text PDF

The circadian system is entrained to the environmental light/dark cycle via retinal photoreceptors and regulates numerous aspects of physiology and behavior, including sleep. These processes are all key factors in healthy aging showing a gradual decline with age. Despite their importance, the exact mechanisms underlying this decline are yet to be fully understood.

View Article and Find Full Text PDF

The recent identification of multiple dominant mutations in the gene encoding β-catenin in both humans and mice has enabled exploration of the molecular and cellular basis of β-catenin function in cognitive impairment. In humans, β-catenin mutations that cause a spectrum of neurodevelopmental disorders have been identified. We identified de novo β-catenin mutations in patients with intellectual disability, carefully characterized their phenotypes, and were able to define a recognizable intellectual disability syndrome.

View Article and Find Full Text PDF

Deficits in motor function are debilitating features in disorders affecting neurological, neuromuscular and musculoskeletal systems. Although these disorders can vary greatly with respect to age of onset, symptomatic presentation, rate of progression and severity, the study of these disease models in mice is confined to the use of a small number of tests, most commonly the rotarod test. To expand the repertoire of meaningful motor function tests in mice, we tested, optimised and validated an automated home-cage-based running-wheel system, incorporating a conventional wheel with evenly spaced rungs and a complex wheel with particular rungs absent.

View Article and Find Full Text PDF

Prion infections of the central nervous system (CNS) are characterized by a reactive gliosis and the subsequent degeneration of neuronal tissue. The activation of glial cells, which precedes neuronal death, is likely to be initially caused by the deposition of misfolded, in part proteinase K-resistant, isoforms (termed PrP(TSE)) of the normal cellular prion protein (PrP(c)) in the brain. Proinflammatory cytokines and chemokines released by PrP(TSE)-activated glial cells and stressed neurons may contribute directly or indirectly to the disease development by enhancement and generalization of the gliosis and via cytotoxicity for neurons.

View Article and Find Full Text PDF

Axon destruction represents one aspect of prion disease-associated neurodegeneration. We characterized here the scrapie infection of Wld(S)-mice in comparison to wild-type C57Bl/6 controls to determine whether mechanisms involved in Wallerian degeneration contribute to disease development in this murine model system. The Wld(S) mutation had neither an effect on survival times, nor on typical hallmarks of a prion infection like deposition of misfolded PrP(Sc) and glia activation.

View Article and Find Full Text PDF

Prion diseases are fatal and at present there are neither cures nor therapies available to delay disease onset or progression in humans. Inspired in part by therapeutic approaches in the fields of Alzheimer's disease and amyotrophic lateral sclerosis, we tested five different drugs, which are known to efficiently pass through the blood-brain barrier, in a murine prion model. Groups of intracerebrally prion-challenged mice were treated with the drugs curcumin, dapsone, ibuprofen, memantine and minocycline.

View Article and Find Full Text PDF

Galectin-3 is a multi-functional protein and participates in mediating inflammatory reactions. The pronounced overexpression of galectin-3 in prion-infected brain tissue prompted us to study the role of this protein in a murine prion model. Immunofluorescence double-labelling identified microglia as the major cell type expressing galectin-3.

View Article and Find Full Text PDF