Purpose: Loss of TGFβ signaling increases error-prone alternative end-joining (alt-EJ) DNA repair. We previously translated this mechanistic relationship as TGFβ and alt-EJ gene expression signatures, which we showed are anticorrelated across cancer types. A score representing anticorrelation, βAlt, predicts patient outcome in response to genotoxic therapy.
View Article and Find Full Text PDFTGFβ is a pleiotropic cytokine that plays critical roles to define cancer cell phenotypes, construct the tumor microenvironment, and suppress antitumor immune responses. As such, TGFβ is a lynchpin for integrating cancer cell intrinsic pathways and communication among host cells in the tumor and beyond that together affect responses to genotoxic, targeted, and immune therapy. Despite decades of preclinical and clinical studies, evidence of clinical benefit from targeting TGFβ in cancer remains elusive.
View Article and Find Full Text PDFAmong the pleotropic roles of transforming growth factor-β (TGFβ) signaling in cancer, its impact on genomic stability is least understood. Inhibition of TGFβ signaling increases use of alternative end joining (alt-EJ), an error-prone DNA repair process that typically functions as a "backup" pathway if double-strand break repair by homologous recombination or nonhomologous end joining is compromised. However, the consequences of this functional relationship on therapeutic vulnerability in human cancer remain unknown.
View Article and Find Full Text PDFPurpose: To analyze the long-term results of a pilot study assessing excision and brachytherapy as salvage treatment for local recurrence after conservative treatment of breast cancer.
Methods And Materials: Between December 1990 and March 2001, 36 patients with breast-only recurrence less than 3 cm in diameter after conservative treatment for Stage I or II breast carcinoma were treated with local excision followed by high-dose rate brachytherapy implants (30 Gy in 12 fractions over a period of 5 days). No patient was lost to follow-up.