Publications by authors named "Ines Foessl"

Article Synopsis
  • * Sarcopenia (muscle loss) and osteoporosis (bone loss) are closely linked, with each condition serving as a predictor for the other, indicating the need for integrated research approaches.
  • * A recent workshop emphasized the importance of muscle characterization in musculoskeletal studies, advocating for more recognition and research on muscle phenotyping in both human and animal models like zebrafish and mice.
View Article and Find Full Text PDF

MicroRNAs (miRNAs) are single-stranded, non-coding RNAs that regulate mRNA expression on a post-transcriptional level. Observational studies suggest an association of serum miRNAs and polycystic ovary syndrome (PCOS), a common heterogeneous endocrinopathy characterized by hyperandrogenism (HA), oligo- or amenorrhea (OM) and polycystic ovaries. It is not known whether these miRNA profiles also differ between PCOS phenotypes.

View Article and Find Full Text PDF

Osteoporosis is a multifactorial disease influenced by genetic and environmental factors, which contributes to an increased risk of bone fracture, but early diagnosis of this disease cannot be achieved using current techniques. We describe a generic platform for the targeted electrochemical genotyping of SNPs identified by genome-wide association studies to be associated with a genetic predisposition to osteoporosis. The platform exploits isothermal solid-phase primer elongation with ferrocene-labeled nucleoside triphosphates.

View Article and Find Full Text PDF

Background: In the ongoing development of bioresorbable implants, there has been a particular focus on magnesium (Mg)-based alloys. Several Mg alloys have shown promising properties, including a lean, bioresorbable magnesium-zinc-calcium (Mg-Zn-Ca) alloy designated as ZX00. To our knowledge, this is the first clinically tested Mg-based alloy free from rare-earth elements or other elements.

View Article and Find Full Text PDF

Osteoporosis is a skeletal disorder that causes impairment of bone structure and strength, leading to a progressively increased risk of fragility fractures. The global prevalence of osteoporosis is increasing in the ageing population. Owing to the chronic character of osteoporosis, years or even decades of preventive measures or therapy are required.

View Article and Find Full Text PDF

Serum concentrations of anti-Müllerian hormone (AMH) have been found to decrease with increasing body mass index (BMI) in many studies. It is not yet clear whether this stems from an adverse effect of adiposity on AMH production, or from dilution due to the greater blood volume that accompanies a larger body size. To investigate a possible hemodilution effect, we explored the relationships between serum AMH levels and different parameters of body composition using linear regression models in a cohort of adult males.

View Article and Find Full Text PDF

Hormone-sensitive lipase (HSL) plays a crucial role in intracellular lipolysis, and loss of HSL leads to diacylglycerol (DAG) accumulation, reduced FA mobilization, and impaired PPARγ signaling. Hsl knockout mice exhibit adipose tissue inflammation, but the underlying mechanisms are still not clear. Here, we investigated if and to what extent HSL loss contributes to endoplasmic reticulum (ER) stress and adipose tissue inflammation in Hsl knockout mice.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how stretch and frequent beating (tachycardia) affect early changes in human heart tissue, specifically in the atria.
  • Researchers applied isometric stretch and sustained tachycardia to human atrial muscle samples for 6 hours and analyzed gene expression, discovering that miR-1183 was significantly up-regulated.
  • Findings suggest that despite different effects on gene expression patterns, both cardiac stressors lead to increased levels of miR-1183, indicating its potential as a biomarker for heart tissue changes in diseases like atrial fibrillation.
View Article and Find Full Text PDF

Background: Suture anchors (SAs) made of human allogenic mineralized cortical bone matrix are among the newest developments in orthopaedic and trauma surgery. Biomechanical properties of an allogenic mineralized suture anchor (AMSA) are not investigated until now. The primary objective was the biomechanical investigation of AMSA and comparing it to a metallic suture anchor (MSA) and a bioabsorbable suture anchor (BSA) placed at the greater tuberosity of the humeral head of cadaver humeri.

View Article and Find Full Text PDF

Hashimoto's thyroiditis (HT) is the most prevalent autoimmune disorder of the thyroid (AITD) and characterized by the presence of circulating autoantibodies evoked by a, to date, not fully understood dysregulation of the immune system. Autoreactive lymphocytes and inflammatory processes in the thyroid gland can impair or enhance thyroid hormone secretion. MicroRNAs (miRNAs) are small noncoding RNAs, which can play a pivotal role in immune functions and the development of autoimmunity.

View Article and Find Full Text PDF

The availability of large human datasets for genome-wide association studies (GWAS) and the advancement of sequencing technologies have boosted the identification of genetic variants in complex and rare diseases in the skeletal field. Yet, interpreting results from human association studies remains a challenge. To bridge the gap between genetic association and causality, a systematic functional investigation is necessary.

View Article and Find Full Text PDF

A synoptic overview of scientific methods applied in bone and associated research fields across species has yet to be published. Experts from the EU Cost Action GEMSTONE ("GEnomics of MusculoSkeletal Traits translational Network") Working Group 2 present an overview of the routine techniques as well as clinical and research approaches employed to characterize bone phenotypes in humans and selected animal models (mice and zebrafish) of health and disease. The goal is consolidation of knowledge and a map for future research.

View Article and Find Full Text PDF

In burn injuries, risk factors and limitations to treatment success are difficult to assess clinically. However, local cellular responses are characterized by specific gene-expression patterns. MicroRNAs (miRNAs) are single-stranded, non-coding RNAs that regulate mRNA expression on a posttranscriptional level.

View Article and Find Full Text PDF

Musculoskeletal research has been enriched in the past ten years with a great wealth of new discoveries arising from genome wide association studies (GWAS). In addition to the novel factors identified by GWAS, the advent of whole-genome and whole-exome sequencing efforts in family based studies has also identified new genes and pathways. However, the function and the mechanisms by which such genes influence clinical traits remain largely unknown.

View Article and Find Full Text PDF

Osteoporosis is a debilitating and costly disease that causes fractures in 33% of women and 20% of men over the age of 50 years. Recent studies have shown that beta blocker (BB) users have higher bone mineral density (BMD) and decreased risk of fracture compared with non-users. The mechanism underlying this association is thought to be due to suppression of adrenergic signaling in osteoblasts, which leads to increased BMD in rodent models; however, the mechanism in humans is unknown.

View Article and Find Full Text PDF

The loss of lipid homeostasis can lead to lipid overload and is associated with a variety of disease states. However, little is known as to how the disruption of lipid regulation or lipid overload affects cell survival. In this study we investigated how excess diacylglycerol (DG), a cardinal metabolite suspected to mediate lipotoxicity, compromises the survival of yeast cells.

View Article and Find Full Text PDF