The early detection of fire is of utmost importance since it is related to devastating threats regarding human lives and economic losses. Unfortunately, fire alarm sensory systems are known to be prone to failures and frequent false alarms, putting people and buildings at risk. In this sense, it is essential to guarantee smoke detectors' correct functioning.
View Article and Find Full Text PDFOne of the areas with the potential to be explored in quantum computing (QC) is machine learning (ML), giving rise to quantum machine learning (QML). In an era when there is so much data, ML may benefit from either speed, complexity or smaller amounts of storage. In this work, we explore a quantum approach to a machine learning problem.
View Article and Find Full Text PDFBreast cancer is currently one of the main causes of death and tumoral diseases in women. Even if early diagnosis processes have evolved in the last years thanks to the popularization of mammogram tests, nowadays, it is still a challenge to have available reliable diagnosis systems that are exempt of variability in their interpretation. To this end, in this work, the design and development of an intelligent clinical decision support system to be used in the preventive diagnosis of breast cancer is presented, aiming both to improve the accuracy in the evaluation and to reduce its uncertainty.
View Article and Find Full Text PDFBackground: The clinical decision-making process in pressure ulcer management is complex, and its quality depends on both the nurse's experience and the availability of scientific knowledge. This process should follow evidence-based practices incorporating health information technologies to assist health care professionals, such as the use of clinical decision support systems. These systems, in addition to increasing the quality of care provided, can reduce errors and costs in health care.
View Article and Find Full Text PDFIEEE Int Symp Parallel Distrib Process Workshops Phd Forum
May 2018
We explore the feasibility of a database storage engine housing up to 307 billion genetic Single Nucleotide Polymorphisms (SNP) for online access. We evaluate database storage engines and implement a solution utilizing factors such as dataset size, information gain, cost and hardware constraints. Our solution provides a full feature functional model for scalable storage and query-ability for researchers exploring the SNP's in the human genome.
View Article and Find Full Text PDFNames in programming are vital for understanding the meaning of code and big data. We define code2brain (C2B) interfaces as maps in compilers and brains between meaning and naming syntax, which help to understand executable code. While working toward an Evolvix syntax for general-purpose programming that makes accurate modeling easy for biologists, we observed how names affect C2B quality.
View Article and Find Full Text PDFInt J Data Min Bioinform
November 2015
The main goal of this work is to produce machine learning models that predict the outcome of a mammography from a reduced set of annotated mammography findings. In the study we used a dataset consisting of 348 consecutive breast masses that underwent image guided core biopsy performed between October 2005 and December 2007 on 328 female subjects. We applied various algorithms with parameter variation to learn from the data.
View Article and Find Full Text PDFAMIA Jt Summits Transl Sci Proc
August 2015
While the use of machine learning methods in clinical decision support has great potential for improving patient care, acquiring standardized, complete, and sufficient training data presents a major challenge for methods relying exclusively on machine learning techniques. Domain experts possess knowledge that can address these challenges and guide model development. We present Advice-Based-Learning (ABLe), a framework for incorporating expert clinical knowledge into machine learning models, and show results for an example task: estimating the probability of malignancy following a non-definitive breast core needle biopsy.
View Article and Find Full Text PDFStud Health Technol Inform
December 2016
Bipolar Disorder (BD) is a chronic and disabling disease that usually appears around 20 to 30 years old. Patients who suffer with BD may struggle for years to achieve a correct diagnosis, and only 50% of them generally receive adequate treatment. In this work we apply a machine learning technique called Inductive Logic Programming (ILP) in order to model relapse and no-relapse patients in a first attempt in this area to improve diagnosis and optimize psychiatrists' time spent with patients.
View Article and Find Full Text PDFProc Int Conf Mach Learn Appl
December 2014
Bayesian network structures are usually built using only the data and starting from an empty network or from a naïve Bayes structure. Very often, in some domains, like medicine, a prior structure knowledge is already known. This structure can be automatically or manually refined in search for better performance models.
View Article and Find Full Text PDFWhen mammography reveals a suspicious finding, a core needle biopsy is usually recommended. In 5% to 15% of these cases, the biopsy diagnosis is non-definitive and a more invasive surgical excisional biopsy is recommended to confirm a diagnosis. The majority of these cases will ultimately be proven benign.
View Article and Find Full Text PDFProceedings (IEEE Int Conf Bioinformatics Biomed)
January 2012
In this work we build the first BI-RADS parser for Portuguese free texts, modeled after existing approaches to extract BI-RADS features from English medical records. Our concept finder uses a semantic grammar based on the BIRADS lexicon and on iterative transferred expert knowledge. We compare the performance of our algorithm to manual annotation by a specialist in mammography.
View Article and Find Full Text PDFProceedings (IEEE Int Conf Bioinformatics Biomed)
November 2011
Breast screening is the regular examination of a woman's breasts to find breast cancer earlier. The sole exam approved for this purpose is mammography. Usually, findings are annotated through the Breast Imaging Reporting and Data System (BIRADS) created by the American College of Radiology.
View Article and Find Full Text PDFThe development of large mammography databases provides an opportunity for knowledge discovery and data mining techniques to recognize patterns not previously appreciated. Using a database from a breast imaging practice containing patient risk factors, imaging findings, and biopsy results, we tested whether inductive logic programming (ILP) could discover interesting hypotheses that could subsequently be tested and validated. The ILP algorithm discovered two hypotheses from the data that were 1) judged as interesting by a subspecialty trained mammographer and 2) validated by analysis of the data itself.
View Article and Find Full Text PDF