Publications by authors named "Ines Drinnenberg"

The hallmarks of chromosome organization in multicellular eukaryotes are chromosome territories (CT), chromatin compartments, and insulated domains, including topologically associated domains (TADs). Yet, most of these elements of chromosome organization are derived from analyses of a limited set of model organisms, while large eukaryotic groups, including insects, remain mostly unexplored. Here we combine Hi-C, biophysical modeling, and microscopy to characterize the 3D genome architecture of the silkworm, Bombyx mori.

View Article and Find Full Text PDF

We previously showed that the silkworm holocentric spindles are square-shaped, compared to the canonical oval shape of human monocentric spindles (Vanpoperinghe et al. 2021). Further, while kinesin-5 depletion resulted in monopolar spindles in both cells, kinesin-14 depletion affected only the silkworm cells, resulting in mal-shaped spindles (Vanpoperinghe et al.

View Article and Find Full Text PDF

Centromeres are specialized chromosomal regions that recruit kinetochore proteins and mediate spindle microtubule attachment to ensure faithful chromosome segregation during mitosis and meiosis. Centromeres can be restricted to one region of the chromosome. Named "monocentromere", this type represents the most commonly found centromere organization across eukaryotes.

View Article and Find Full Text PDF

Proper chromosome segregation during mitosis requires both the assembly of a microtubule (MT)-based spindle and the assembly of DNA-centromere-based kinetochore structure. Kinetochore-to-MT attachment enables chromosome separation. Monocentric cells, such as found in human, have one unique kinetochore per chromosome.

View Article and Find Full Text PDF

Accurate chromosome segregation during meiosis is essential for reproductive success. Yet, many fundamental aspects of meiosis remain unclear, including the mechanisms regulating homolog pairing across species. This gap is partially due to our inability to visualize individual chromosomes during meiosis.

View Article and Find Full Text PDF

Despite the essentiality for faithful chromosome segregation, centromere architectures are diverse among eukaryotes and embody two main configurations: mono- and holocentromeres, referring, respectively, to localized or unrestricted distribution of centromeric activity. Of the two, some holocentromeres offer the curious condition of having arisen independently in multiple insects, most of which have lost the otherwise essential centromere-specifying factor CenH3 (first described as CENP-A in humans). The loss of CenH3 raises intuitive questions about how holocentromeres are organized and regulated in CenH3-lacking insects.

View Article and Find Full Text PDF

RNA interference (RNAi) is a gene-silencing pathway that can play roles in viral defense, transposon silencing, heterochromatin formation and post-transcriptional gene silencing. Although absent from Saccharomyces cerevisiae, RNAi is present in other budding-yeast species, including Naumovozyma castellii, which have an unusual Dicer and a conventional Argonaute that are both required for gene silencing. To identify other factors that act in the budding-yeast pathway, we performed an unbiased genetic selection.

View Article and Find Full Text PDF

Accurate chromosome segregation requires assembly of the multiprotein kinetochore complex at centromeres. In most eukaryotes, kinetochore assembly is primed by the histone H3 variant CenH3 (also called CENP-A), which physically interacts with components of the inner kinetochore constitutive centromere-associated network (CCAN). Unexpectedly, regarding its critical function, previous work identified that select eukaryotic lineages, including several insects, have lost CenH3 while having retained homologs of the CCAN.

View Article and Find Full Text PDF

Over the past few years, interest in chromatin and its evolution has grown. To further advance these interests, we organized a workshop with the support of The Company of Biologists to debate the current state of knowledge regarding the origin and evolution of chromatin. This workshop led to prospective views on the development of a new field of research that we term 'EvoChromo'.

View Article and Find Full Text PDF

The development of new technologies and experimental techniques is enabling researchers to see what was once unable to be seen. For example, the centromere was first seen as the mediator between spindle fiber and chromosome during mitosis and meiosis. Although this continues to be its most prominent role, we now know that the centromere functions beyond cellular division with important roles in genome organization and chromatin regulation.

View Article and Find Full Text PDF

Histones wrap DNA to form nucleosomes that package eukaryotic genomes. Histone variants have evolved for diverse functions including gene expression, DNA repair, epigenetic silencing, and chromosome segregation. With the rapid increase of newly sequenced genomes the repertoire of histone variants expands, demonstrating a great diversification of these proteins across eukaryotes.

View Article and Find Full Text PDF

The kinetochore is the multi-protein complex that drives chromosome segregation in eukaryotes. It assembles onto centromeric DNA and mediates attachment to spindle microtubules. Kinetochore research over the last several decades has been focused on a few animal and fungal model organisms, which revealed a detailed understanding of the composition and organization of their kinetochores.

View Article and Find Full Text PDF

The kinetochore drives faithful chromosome segregation in all eukaryotes, yet the underlying machinery is diverse across species. D'Archivio and Wickstead (2017. J.

View Article and Find Full Text PDF

The kinetochore is a multiprotein complex that mediates the attachment of a eukaryotic chromosome to the mitotic spindle. The protein composition of kinetochores is similar across species as divergent as yeast and human. However, recent findings have revealed an unexpected degree of compositional diversity in kinetochores.

View Article and Find Full Text PDF

Faithful chromosome segregation in all eukaryotes relies on centromeres, the chromosomal sites that recruit kinetochore proteins and mediate spindle attachment during cell division. The centromeric histone H3 variant, CenH3, is the defining chromatin component of centromeres in most eukaryotes, including animals, fungi, plants, and protists. In this study, using detailed genomic and transcriptome analyses, we show that CenH3 was lost independently in at least four lineages of insects.

View Article and Find Full Text PDF

Using the yeast Cryptococcus neoformans, we describe a mechanism by which transposons are initially targeted for RNAi-mediated genome defense. We show that intron-containing mRNA precursors template siRNA synthesis. We identify a Spliceosome-Coupled And Nuclear RNAi (SCANR) complex required for siRNA synthesis and demonstrate that it physically associates with the spliceosome.

View Article and Find Full Text PDF

The generation of mature functional RNAs from nascent transcripts requires the precise and coordinated action of numerous RNAs and proteins. One such protein family, the ribonuclease III (RNase III) endonucleases, includes Rnt1, which functions in fungal ribosome and spliceosome biogenesis, and Dicer, which generates the siRNAs of the RNAi pathway. The recent discovery of small RNAs in Candida albicans led us to investigate the function of C.

View Article and Find Full Text PDF

The RNA interference (RNAi) pathway is found in most eukaryotic lineages but curiously is absent in others, including that of Saccharomyces cerevisiae. We show that reconstituting RNAi in S. cerevisiae causes loss of a beneficial double-stranded RNA virus known as killer virus.

View Article and Find Full Text PDF

RNA interference (RNAi), a gene-silencing pathway triggered by double-stranded RNA, is conserved in diverse eukaryotic species but has been lost in the model budding yeast Saccharomyces cerevisiae. Here, we show that RNAi is present in other budding yeast species, including Saccharomyces castellii and Candida albicans. These species use noncanonical Dicer proteins to generate small interfering RNAs, which mostly correspond to transposable elements and Y' subtelomeric repeats.

View Article and Find Full Text PDF

The lymphatic vascular system regulates tissue fluid homeostasis and the afferent phase of the immune response, and it is also involved in tumor metastasis. There is increasing evidence that lymphatic vessels also mediate acute and chronic inflammation. However, the mechanisms and functional consequences of lymphangiogenesis under inflammatory conditions are largely unknown.

View Article and Find Full Text PDF

Even though mRNA expression levels are commonly used as a proxy for estimating functional differences that occur at the protein level, the relation between mRNA and protein expression is not well established. Further, no study to date has tested whether the evolutionary differences in mRNA expression observed between species reflect those observed in protein expression. Since a large proportion of mRNA expression differences observed between mammalian species appears to have no functional consequences for the phenotype, it is conceivable that many or most mRNA expression differences are not reflected at the protein level.

View Article and Find Full Text PDF

The lymphatic vascular system plays a pivotal role in mediating tissue fluid homeostasis and cancer metastasis, but the molecular mechanisms that regulate its formation and function remain poorly characterized. A comparative analysis of the gene expression of purified lymphatic endothelial cells (LEC) versus blood vascular endothelial cells (BVEC) revealed that LEC express significantly higher levels of hepatocyte growth factor receptor (HGF-R). Whereas little or no HGF-R expression was detected by lymphatic vessels of normal tissues, HGF-R was strongly expressed by regenerating lymphatic endothelium during tissue repair and by activated lymphatic vessels in inflamed skin.

View Article and Find Full Text PDF