Radiol Artif Intell
March 2022
This study develops, validates, and deploys deep learning for automated total kidney volume (TKV) measurement (a marker of disease severity) on T2-weighted MRI studies of autosomal dominant polycystic kidney disease (ADPKD). The model was based on the U-Net architecture with an EfficientNet encoder, developed using 213 abdominal MRI studies in 129 patients with ADPKD. Patients were randomly divided into 70% training, 15% validation, and 15% test sets for model development.
View Article and Find Full Text PDFBackground: Screening for rapidly progressing autosomal dominant polycystic kidney disease (ADPKD) is necessary for assigning and monitoring therapies. Height-adjusted total kidney volume (ht-TKV) is an accepted biomarker for clinical prognostication, but represents only a small fraction of information on abdominal MRI.
Purpose: To investigate the utility of other MR features of ADPKD to predict progression.