Robust manufacturing processes resulting in consistent glycosylation are critical for the efficacy and safety of biopharmaceuticals. Information on glycosylation can be obtained by conventional bottom-up methods but is often limited to the glycan or glycopeptide level. Here, we apply high-resolution native mass spectrometry (MS) for the characterization of the therapeutic fusion protein Etanercept to unravel glycoform heterogeneity in conditions of hitherto unmatched mass spectral complexity.
View Article and Find Full Text PDFThe characterization and absolute quantification of protein biopharmaceuticals and their product-related impurities, e.g., oxidation variants, is essential due to their potential impact on biological activity and immunogenicity.
View Article and Find Full Text PDFAn analytical workflow was developed for the absolute quantification of uridine diphosphate (UDP)-sugars in plant material in order to compare their metabolism both in wild-type Arabidopsis thaliana and mutated plants (ugd2,3) possessing genetic alterations within the UDP-glucose dehydrogenase genes involved in UDP-sugar metabolism. UDP-sugars were extracted from fresh plant material by chloroform-methanol-water extraction and further purified by solid-phase extraction with a porous graphitic carbon adsorbent with extraction efficiencies between 80 ± 5 % and 90 ± 5 %. Quantitative determination of the UDP-sugars was accomplished through HPLC separation with a porous graphitic carbon column (Hypercarb(TM)) which was interfaced to electrospray ionization Orbitrap mass spectrometry.
View Article and Find Full Text PDFThe characterization of proteins modified with poly(ethylene glycol) (PEG), such as recombinant human granulocyte-colony stimulating factor (PEGylated rhG-CSF or pegfilgrastim), by electrospray ionization-mass spectrometry (ESI-MS) constitutes a challenge due to the overlapping protein charge state pattern and PEG polydispersity. In order to minimize spectral overlaps, charge reduction by means of the addition of amine was applied. Method development for direct-infusion measurements, carried out on an ESI-time-of-flight (ESI-TOF) instrument, demonstrated the potential of triethylamine (TEA) for shifting the charge state pattern toward lower-charged species and of formic acid (FA) for causing higher charging.
View Article and Find Full Text PDF