Outbreaks of (Hübner, 1818) (Lepidoptera: Erebidae), a major pest of soybean, can be controlled below economic thresholds with methods that do not involve the application of synthetic insecticides. Formulations based on natural isolates of the Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV) (: ) played a significant role in integrated pest management programs in the early 2000s, but a new generation of chemical insecticides and transgenic soybean have displaced AgMNPV-based products over the past decade. However, the marked genotypic variability present among and within alphabaculovirus isolates suggests that highly insecticidal genotypic variants can be isolated and used to reduce virus production costs or overcome isolate-dependent host resistance.
View Article and Find Full Text PDFThe mechanisms generating variability in viruses are diverse. Variability allows baculoviruses to evolve with their host and with changes in their environment. We examined the role of one genetic variant of Chrysodeixis includens nucleopolyhedrovirus (ChinNPV) and its contribution to the variability of the virus under laboratory conditions.
View Article and Find Full Text PDFAlphabaculoviruses () are pathogenic DNA viruses of Lepidoptera that have applications as the basis for biological insecticides and expression vectors in biotechnological processes. These viruses have a characteristic physical structure that facilitates the transmission of groups of genomes. We demonstrate that coinfection of a susceptible insect by two different alphabaculovirus species results in the production of mixed-virus occlusion bodies containing the parental viruses.
View Article and Find Full Text PDFBaculoviruses (BV) are highly effective against lepidopteran pests of economic importance such as . The combined use of entomopathogens and macrobiological control agents requires the study of their relationships. Laboratory bioassays were developed to evaluate the interactions between the multiple nucleopolyhedroviruses of (SeMNPV) and (AcMNPV), and the predator .
View Article and Find Full Text PDFPhylogenetic analyses suggest that Mamestra brassicae multiple nucleopolyhedrovirus (MbMNPV) and Helicoverpa armigera multiple nucleopolyhedrovirus (HearMNPV) may be strains of the same virus species. Most of the studies comparing their biological activities have been performed in their homologous hosts. A comparison of host range and stability in alternative hosts was performed.
View Article and Find Full Text PDFGenetic variation in baculoviruses is recognized as a key factor, not only due to the influence of such variation on pathogen transmission and virulence traits, but also because genetic variants can form the basis for novel biological insecticides. In this study, we examined the genetic variability of Chrysodeixis includens nucleopolyhedrovirus (ChinNPV) present in field isolates obtained from virus-killed larvae. Different ChinNPV strains were identified by restriction endonuclease analysis, from which genetic variants were isolated by plaque assay.
View Article and Find Full Text PDFThe "11K" gene family is notable for having homologs in both baculoviruses and entomopoxviruses and is classified as either type 145 or type 150, according to their similarity with the ac145 or ac150 genes of Autographa californica multiple nucleopolyhedrovirus (AcMNPV). One homolog of ac145 (sf138) and two homologs of ac150 (sf68 and sf95) are present in Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV). Recombinant bacmids lacking sf68, sf95 or sf138 (Sf68null, Sf95null and Sf138null, respectively) and the respective repair bacmids were generated from a bacmid comprising the complete virus genome.
View Article and Find Full Text PDFUnlabelled: Superinfection exclusion is the ability of an established virus to interfere with a second virus infection. This effect was studied in vitro during lepidopteran-specific nucleopolyhedrovirus (genus Alphabaculovirus, family Baculoviridae) infection. Homologous interference was detected in Sf9 cells sequentially infected with two genotypes of Autographa californica multiple nucleopolyhedrovirus (AcMNPV), each one expressing a different fluorescent protein.
View Article and Find Full Text PDFA recombinant virus lacking the sf32 gene (Sf32null), unique to the Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV), was generated by homologous recombination from a bacmid comprising the complete viral genome (Sfbac). Transcriptional analysis revealed that sf32 is an early gene. Occlusion bodies (OBs) of Sf32null contained 62% more genomic DNA than viruses containing the sf32 gene, Sfbac and Sf32null-repair, although Sf32null DNA was three-fold less infective when injected in vivo.
View Article and Find Full Text PDFThe complete genomic sequence of a Nicaraguan plaque purified Spodoptera frugiperda nucleopolyhedrovirus (SfMNPV) genotype SfMNPV-B was determined and compared to previously sequenced isolates from United States (SfMNPV-3AP2) and Brazil (SfMNPV-19). The genome of SfMNPV-B (132,954bp) was 1623bp and 389bp larger than that of SfMNPV-3AP2 and SfMNPV-19, respectively. Genome size differences were mainly due to a deletion located in the SfMNPV-3AP2 egt region and small deletions and point mutations in SfMNPV-19.
View Article and Find Full Text PDF