The cornea, the anterior meniscus-shaped transparent and refractive structure of the eyeball, is the first mechanical barrier of the eye. Its functionality heavily relies on the health of its endothelium, its most posterior layer. The treatment of corneal endothelial cells (CECs) deficiency is allogeneic corneal graft using stored donor corneas.
View Article and Find Full Text PDFThe bioengineering of corneal endothelial grafts consists of seeding in vitro cultured corneal endothelial cells onto a thin, transparent, biocompatible, and sufficiently robust carrier which can withstand surgical manipulations. This is one of the most realistic alternatives to donor corneas, which are in chronic global shortage. The anterior capsule of the crystalline lens has already been identified as one of the best possible carriers, but its challenging manual preparation has limited its use.
View Article and Find Full Text PDFCorneal endothelial diseases are the leading cause of corneal transplantation. The global shortage of donor corneas has resulted in the investigation of alternative methods, such as cell therapy and tissue-engineered endothelial keratoplasty (TEEK), using primary cultures of human corneal endothelial cells (hCECs). The main challenge is optimizing the hCEC culture process to increase the endothelial cell density (ECD) and overall yield while preventing endothelial-mesenchymal transition (EndMT).
View Article and Find Full Text PDFThe pathophysiology underlying olfactory dysfunction is still poorly understood, and more efficient biomolecular tools are necessary to explore this aspect. Immunohistochemistry (IHC) on cross sections is one of the major tools to study the olfactory epithelium (OE), but does not allow reliable counting of olfactory sensory neurons (OSNs) or cartography of the OE. In this study, we want to present an easy immunostaining technique to compensate for these defects of IHC.
View Article and Find Full Text PDFBackground: The risk of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) transmission through corneal graft is an ongoing debate and leads to strict restrictions in corneas procurement, leading to a major decrease in eye banking activity. The aims of this study are to specifically assess the capacity of human cornea to be infected by SARS-CoV-2 and promote its replication ex vivo, and to evaluate the real-life risk of corneal contamination by detecting SARS-CoV-2 RNA in corneas retrieved in donors diagnosed with Coronavirus Disease 2019 (COVID-19) and nonaffected donors.
Methods And Findings: To assess the capacity of human cornea to be infected by SARS-CoV-2, the expression pattern of SARS-CoV-2 receptor angiotensin-converting enzyme 2 (ACE-2) and activators TMPRSS2 and Cathepsins B and L in ocular surface tissues from nonaffected donors was explored by immunohistochemistry (n = 10 corneas, 78 ± 11 years, 40% female) and qPCR (n = 5 corneas, 80 ± 12 years, 40% female).